Results of approbation of the innovative method of ion nitriding for steels with low temperatures of tempering

Authors

  • Anatoly Andreev National Science Center Kharkov Institute of Physics and Technology Akademichna str., 1, Kharkiv, Ukraine, 61108, Ukraine
  • Oleg Sоbоl National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-4497-4419
  • Svitlana Shevchenko National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002, Ukraine
  • Vyacheslav Stolbovoy National Science Center Kharkov Institute of Physics and Technology Akademichna str., 1, Kharkiv, Ukraine, 61108, Ukraine
  • Viktor Aleksandrov National Science Center Kharkov Institute of Physics and Technology Akademichna str., 1, Kharkiv, Ukraine, 61108, Ukraine
  • Dmitriy Kovteba National Science Center Kharkov Institute of Physics and Technology Akademichna str., 1, Kharkiv, Ukraine, 61108, Ukraine
  • Alexander Terletsky National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-5948-9934
  • Tatyana Protasenko National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0001-6045-685X

DOI:

https://doi.org/10.15587/1729-4061.2017.104179

Keywords:

ionic nitriding, complex treatment, diffusion, depth of impact, diffraction spectra

Abstract

The innovation technique of complex treatment for steels with the low temperature of tempering is proposed and tested in the course of present study. It includes nitriding in the vacuum gas discharge before hardening and tempering. In this case, during nitriding, the heating temperature influences little the process of high-temperature treatment. In this case, the process of diffusion of nitrogen atoms is accelerated considerably (since nitrogen atoms penetrate untempered steel more easily), which leads to an increase to 2000 µm in the depth of penetration of nitrogen atoms and in the thickness of the formed region with changed structure and hardness. It was established that, according to the properties, the region of exposure is divided into a surface layer (with a thickness of about 200 µm) with lowered hardness and the deeper operating layer with enhanced hardness. Layer with the greatest hardness is at depth of 400–800 µm. In this case, enhanced hardness, in comparison with the base, is maintained at depth that exceeds 2000 µm. The surface layer with low hardness makes it possible to implement the allowance for finishing, in order to obtain the required accuracy of dimensions and surface finish. Hardness of the surface of articles after this sequence of operations for the steels with low temperature of tempering is at the level of 8–10 GPa. The phase composition of the nitrided layer with high hardness, detected by the X-ray diffraction method, is the lowest nitride Fe4N and the solution of nitrogen in α-Fe

Author Biographies

Anatoly Andreev, National Science Center Kharkov Institute of Physics and Technology Akademichna str., 1, Kharkiv, Ukraine, 61108

Doctor of Technical Sciences

Oleg Sоbоl, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Physics and Mathematics Sciences, Professor

Department of Materials Science

Svitlana Shevchenko, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Senior Lecturer

Department of Materials Science

Vyacheslav Stolbovoy, National Science Center Kharkov Institute of Physics and Technology Akademichna str., 1, Kharkiv, Ukraine, 61108

PhD, Head of Laboratory

Viktor Aleksandrov, National Science Center Kharkov Institute of Physics and Technology Akademichna str., 1, Kharkiv, Ukraine, 61108

Engineer

Dmitriy Kovteba, National Science Center Kharkov Institute of Physics and Technology Akademichna str., 1, Kharkiv, Ukraine, 61108

Junior Researcher

Alexander Terletsky, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Materials Science

Tatyana Protasenko, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Associate professor

Department of Materials Science

References

  1. Ducros, C., Sanchette, F. (2006). Multilayered and nanolayered hard nitride thin films deposited by cathodic arc evaporation. Part 2: Mechanical properties and cutting performances. Surface and Coatings Technology, 201 (3-4), 1045–1052. doi: 10.1016/j.surfcoat.2006.01.029
  2. Pogrebnjak, A. D., Yakushchenko, I. V., Abadias, G., Chartier, P., Bondar, O. V., Beresnev, V. M. et. al. (2013). The effect of the deposition parameters of nitrides of high-entropy alloys (TiZrHfVNb)N on their structure, composition, mechanical and tribological properties. Journal of Superhard Materials, 35 (6), 356–368. doi: 10.3103/s106345761306004x
  3. Morton, B. D., Wang, H., Fleming, R. A., Zou, M. (2011). Nanoscale Surface Engineering with Deformation-Resistant Core–Shell Nanostructures. Tribology Letters, 42 (1), 51–58. doi: 10.1007/s11249-011-9747-0
  4. Sobol’, O. V. (2011). Control of the structure and stress state of thin films and coatings in the process of their preparation by ion-plasma methods. Physics of the Solid State, 53 (7), 1464–1473. doi: 10.1134/s1063783411070274
  5. Sun, Y., Bloyce, A., Bell, T. (1995). Finite element analysis of plastic deformation of various TiN coating/ substrate systems under normal contact with a rigid sphere. Thin Solid Films, 271 (1-2), 122–131. doi: 10.1016/0040-6090(95)06942-9
  6. Sobol’, O. V., Andreev, A. A., Stolbovoi, V. A., Fil’chikov, V. E. (2012). Structural-phase and stressed state of vacuum-arc-deposited nanostructural Mo-N coatings controlled by substrate bias during deposition. Technical Physics Letters, 38 (2), 168–171. doi: 10.1134/s1063785012020307
  7. Sobol’, O. V. (2016). The influence of nonstoichiometry on elastic characteristics of metastable β-WC1–x phase in ion plasma condensates. Technical Physics Letters, 42 (9), 909–911. doi: 10.1134/s1063785016090108
  8. Sobol’, O. V. (2016). Structural Engineering Vacuum-plasma Coatings Interstitial Phases. Journal of Nano- and Electronic Physics, 8 (2), 02024-1–02024-7. doi: 10.21272/jnep.8(2).02024
  9. Ivashchenko, V. I., Dub, S. N., Scrynskii, P. L., Pogrebnjak, A. D., Sobol’, O. V., Tolmacheva, G. N. et. al. (2016). Nb–Al–N thin films: Structural transition from nanocrystalline solid solution nc-(Nb,Al)N into nanocomposite nc-(Nb, Al)N/a–AlN. Journal of Superhard Materials, 38 (2), 103–113. doi: 10.3103/s1063457616020040
  10. Barmin, A. E., Sobol’, O. V., Zubkov, A. I., Mal’tseva, L. A. (2015). Modifying effect of tungsten on vacuum condensates of iron. The Physics of Metals and Metallography, 116 (7), 706–710. doi: 10.1134/s0031918x15070017
  11. Rissel, H., Ruge, I. (1975). Ionnaya implantaciya. Moscow: Energiya, 97.
  12. Pastuh, I. M. (2006). Teoriya i praktika bezvodorodnogo azotirovaniya v tleyushchem razryade. Kharkiv: NNC HFTI, 364.
  13. Gerasimov, S. A., Gress, M. A., Lapteva, V. G., Muhin, G. G., Bayazitova, V. V. (2008). Soprotivlenie iznashivaniyu gazobaricheskih azotirovannyh sloev na stali 12H18N10T. Metallovedenie i termicheskaya obrabotka metallov, 2, 34–37.
  14. Lahtin, Yu. M., Kogan, Ya. D., Shpis, G. I., Bemer, Z. (1991). Teoriya i tekhnologiya azotirovaniya. Moscow: Metallurgiya, 320.
  15. Zinchenko, V. M., Syropyatov, V. Ya., Prusakov, B. A., Perekatov, Yu. A. (2003). Azotnyy potencial: sovremennoe sostoyanie problemy i koncepciya razvitiya. Moscow: FGUP «Izdatel'stvo «Mashinostroenie», 90.
  16. Andreev, A. A., Sablev, L. P., Grigor'ev, S. N. (2010). Vakuumno-dugovye pokrytiya. Kharkiv: NNC HFTI, 317.
  17. Torchane, L., Bilger, P., Dulcy, J., Gantois, M. (1996). Control of iron nitride layers growth kinetics in the binary Fe-N system. Metallurgical and Materials Transactions A, 27 (7), 1823–1835. doi: 10.1007/bf02651932
  18. Pinedo, C. E., Monteiro, W. A. (2004). On the kinetics of plasma nitriding a martensitic stainless steel type AISI 420. Surface and Coatings Technology, 179 (2-3), 119–123. doi: 10.1016/s0257-8972(03)00853-3
  19. Wei, C. C. (2012). Analyses of Material Properties of Nitrided AISI M2 Steel Treated by Plasma Immersion Ion Implantation (PIII) Process. Advanced Science Letters, 12 (1), 148–154. doi: 10.1166/193666112800850833
  20. Manova, D., Hirsch, D., Richter, E., Mandl, S., Neumann, H., Rauschenbach, B. (2007). Microstructure of nitrogen implanted stainless steel after wear experiment. Surface and Coatings Technology, 201 (19-20), 8329–8333. doi: 10.1016/j.surfcoat.2006.10.060
  21. Campos, M., de Souza, S. D., de Souza, S., Olzon-Dionysio, M. (2011). Improving the empirical model for plasma nitrided AISI 316L corrosion resistance based on Mossbauer spectroscopy. Hyperfine Interactions, 203 (1-3), 105–112. doi: 10.1007/s10751-011-0351-3
  22. Ozturk, O., Williamson, D. L. (1995). Phase and composition depth distribution analyses of low energy, high flux N implanted stainless steel. Journal of Applied Physics, 77 (8), 3839–3850. doi: 10.1063/1.358561
  23. Fernandes, B. B., Mandl, S., Oliveira, R. M., Ueda, M. (2014). Mechanical properties of nitrogen-rich surface layers on SS304 treated by plasma immersion ion implantation. Applied Surface Science, 310, 278–283. doi: 10.1016/j.apsusc.2014.04.142
  24. Koster, K., Kaestner, P., Brauer, G., Hoche, H., Troßmann, T., Oechsner, M. (2013). Material condition tailored to plasma nitriding process for ensuring corrosion and wear resistance of austenitic stainless steel. Surface and Coatings Technology, 228, S615–S618. doi: 10.1016/j.surfcoat.2011.10.059
  25. Maistro, G., Perez-Garcia, S. A., Norell, M., Nyborg, L., Cao, Y. (2016). Thermal decomposition of N-expanded austenite in 304L and 904L steels. Surface Engineering, 33 (4), 319–326. doi: 10.1080/02670844.2016.1262989
  26. Williamson, D. L., Ozturk, O., Wei, R., Wilbur, P. J. (1994). Metastable phase formation and enhanced diffusion in f.c.c. alloys under high dose, high flux nitrogen implantation at high and low ion energies. Surface and Coatings Technology, 65 (1-3), 15–23. doi: 10.1016/s0257-8972(94)80003-0
  27. Yang, S., Cooke, K., Sun, H., Li, X., Lin, K., Dong, H. (2013). Development of advanced duplex surface systems by combining CrAlN multilayer coatings with plasma nitrided steel substrates. Surface and Coatings Technology, 236, 2–7. doi: 10.1016/j.surfcoat.2013.07.017
  28. Grigor'ev, S. N., Metel', A. S., Fedorov, S. V. (2012). Modifikaciya struktury i svoystv bystrorezhushchih staley putem kombinirovannoy vakuumno-plazmennoy obrabotki. Metallovedenie i termicheskaya obrabotka, 1, 9–14.
  29. Bogachev, I. I., Klimov, V. N. (2016). Razrabotka tekhnologii glubokogo ionno-plazmennogo azotirovaniya. Nauchnaya diskussiya: voprosy tekhnicheskih nauk, 33 (3), 53.
  30. Sobol’, O. V., Shovkoplyas, O. A. (2013). On advantages of X-ray schemes with orthogonal diffraction vectors for studying the structural state of ion-plasma coatings. Technical Physics Letters, 39 (6), 536–539. doi: 10.1134/s1063785013060126

Downloads

Published

2017-06-30

How to Cite

Andreev, A., Sоbоl O., Shevchenko, S., Stolbovoy, V., Aleksandrov, V., Kovteba, D., Terletsky, A., & Protasenko, T. (2017). Results of approbation of the innovative method of ion nitriding for steels with low temperatures of tempering. Eastern-European Journal of Enterprise Technologies, 3(5 (87), 31–36. https://doi.org/10.15587/1729-4061.2017.104179

Issue

Section

Applied physics