Development of a set of methods for preforecasting fractal time series analysis to determine the level of persistence

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.104425

Keywords:

persistence, Hurst exponent, time series, fractal dimension, sequential R/S analysis

Abstract

A set of methods for the pre-forecasting fractal time series analysis to determine the levels of persistence of chaotic information flows in the well-drilling control system is proposed. Based on this methodology, the values of the Hurst exponent H, fractal dimension D, spatial dimension n and correlation measure C are obtained for six time series. Since the Hurst exponent H for all the signals is greater than 0.5, the conclusion about a chaotic nature of the studied time series is made. However, the dynamics of these signals will not change and it can be predicted that it will evolve in the same direction as in the past. This allows using the obtained results for forecasting and early detection of deviations of the drilling process from the norm. Since the oil and gas well drilling process is a complex stochastic process proceeding in conditions of a priori and current uncertainty under the influence of immeasurable disturbances, calculation of the Hurst exponent H contributes to solving the forecasting problems in the automated support system of decision-making regarding well-drilling process control

Author Biographies

Vitaliai Kropyvnytska, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

PhD, Associate Professor

Department of computer systems and networks

Lev Kopystynskyy, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

Postgraduate student

Department of automation computer-integrated technologies

Georgiy Sementsov, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

Doctor of Technical Sciences, Professor

Department of automation computer-integrated technologies

References

  1. Racine, R. (2011). Estimating the Hurst exponent. MOSAIC Group: Bachelor thesis, Zurich, 30.
  2. Malhar, K., Ferry, B. B. (2011). Fractal Analysis of Time Series and Distribution Properties of Hurst Exponent. Journal of Mathematical Sciences & Mathematics Education, 5 (1), 8–19.
  3. Orzeszko, W. (2010). Wymiar fraktalny szeregow czasowych a ryzyko inwestowania. Acta Universitatis Nicolai Copernici Ekonomia, 41 (0), 57. doi: 10.12775/aunc_econ.2010.004
  4. Panek, D., Kropik, P., Predota, A. (2011). On fractal dimension estimation. Przeglad Elektrotechniczny (Electrical Review), 5, 120–122.
  5. Ogolo, N. A., Onyekonwu, M. A., Ajienka, J. A. (2011). Application of Nanotechnology in the Oil and Gas Industry. Port Harcourt. Institute of Petroleum Studies, 15–16.
  6. Krishnamoorti, R. (2006). Extracting the Benefits of Nanotechnology for the Oil Industry. Journal of Petroleum Technology, 58 (11), 24–26. doi: 10.2118/1106-0024-jpt
  7. Azar, J. J. (2006). Drilling Problems and Solutions. Drilling Engineering. University of Tusla, 433–454.
  8. Cayeux, E., Daireaux, B. (2009). Early Detection of Drilling Conditions Deterioration Using Real-Time Calibration of Computer Models: Field Example from North Sea Drilling Operations. SPE/IADC Drilling Conference and Exhibition. doi: 10.2118/119435-ms
  9. Wardt, J. P. de, Inabinett, C. E., Laing, M. L., Macpherson, J. D. (2016). Systems Architecture and Operations States for Drilling and Completion: The Foundation to Real Performance Measurement and Drilling Systems Automation. IADC/SPE Drilling Conference and Exhibition. doi: 10.2118/178814-ms
  10. Oganov, G. S., Shirin-Zade, S. A., Paramonov, A. A. (2009). Dinamicheskiy analiz processa uglubleniya skvazhin. Vestnik Associacii burovyh podryadchikov, 1, 40–44.
  11. Berzlev, O. Yu. Metodyka peredprohnoznoho fraktal'noho analizu hausovykh ryadiv. Upravlinnya rozvytkom skladnykh system, 16, 76–81.
  12. Danylenko, V. A. (2010). Al'ternatyvni metodyky provedennya franktal'noho analizu. Ekonomika promyslovosti, 2, 8–12.
  13. Jacobs, T. (2015). Automated Drilling Technologies Showing Promise. Journal of Petroleum Technology, 67 (06), 50–55. doi: 10.2118/0615-0050-jpt
  14. Nych, L. Ya., Kamins'kyy, R. M. (2015). Vyznachennya pokaznyka Hersta za dopomohoyu fraktal'noyi rozmirnosti, obchyslenoyi klitynkovym metodom na prykladi korotkykh hausovykh ryadiv. Visnyk Natsional'noho universytetu "L'vivs'ka politekhnika". Informatsiyni systemy ta merezhi, 814, 100–111. Available at: http://nbuv.gov.ua/UJRN/VNULPICM_2015_814_12
  15. Zaruba, Yu. V., Fadyeyeva, O. V. (2007). Alhorytmy identyfikatsiyi khaotychnykh poslidovnostey za dopomohoyu pokaznyka Khersta. Sovremennye problemy i puti ih resheniya v nauke, transporte, proizvodstve i obrazovanii 2007. Odessa, 16–23.
  16. Alimbekov, R. I., Vasil'ev, V. I., Nugaev, I. F., Agzamov, V. V., Shulakov, A. S. (2000). Komp'yuterizirovannye tekhnologii upravleniya bureniem naklonno napravlennyh skvazhin. Neftyanoe hozyaystvo, 12, 120–122.
  17. Shmitd, A. P., Baldenko, F. D., Shmidt, N. A. (2003). Perspektivy primeneniya avtomatizirovannoy sistemy upravleniya rezhimom bureniya v ustanovkah s nepreryvnoy kolonoy gibkih trub (coiled tubing). Stroitel'stvo neftyanyh i gazovyh skvazhin na sushe i na more, 12, 7–8.
  18. Baldenko, F. D., Shmidt, A. P. (2003). Avtomatizirovannye sistemy upravleniya rezhimom bureniya skvazhin zaboynymi dvigatelyami. Burenie i neft', 4, 14–17.
  19. Nesterova, T. N., Chebinov, S. N. (2003). Informacionnoe obespechenie snizheniya riskov i zatrat v burenii. Burenie i neft', 10, 39–41.
  20. Zakirov, N. N. (2003). Vliyanie tekhnologicheskih parametrov bureniya skvazhin na mekhanicheskuyu skorost' i prohodku na doloto. Burenie i neft', 6, 16–18.
  21. Gasanov, R. A., Medzhidov, G. N., Alekperov, R. B., Kerimov, K. S., Medzhidov, N. A. (2001). Razrabotka avtomatizirovannoy sistemy dlya prognozirovaniya pokazateley bureniya na osnove neyronnyh modeley. Neftyanoe hozyaystvo, 10, 40–42.
  22. Gibadullin, N. Z., Lugumanov, M. G., Ikonnikov, I. I. (2013). Osobennosti geologo-tekhnicheskogo kontrolya provodki skvazhin na depressii s primeneniem koltyubingovoy tekhnologii. NTV «Karotazhnik», 102, 45–48.
  23. Bol'shakov, A. A., Karimov, R. N. (2016). Metody obrabotki mnogomernyh dannyh i vremennyh ryadov. Moscow: Goryachaya liniya-Telekom, 520.
  24. Trunova, O. V., Skiter, I. S. (2013). Ispol'zovanie fraktal'nogo analiza dlya issledovaniya dinamiki slozhnyh sistem. Matematicheskoe i imitacionnoe modelirovanie sistem. Chernigov, CHNTU, 296–299.
  25. Bodyanskiy, E. V., Pliss, I. P., Chaplanov, A. P. (2002). Dinamicheskaya rekonstrukciya haoticheskih signalov na osnove neyrosetevyh tekhnologiy. Radioehlektronika i informatika, 3 (20), 62–64.
  26. Tur, H. I., Trunova, O. V. (2005). Zastosuvannya metodu fraktal'noho analizu dlya vyznachennya trendovykh kharakterystyk chyslovykh ryadiv. Visnyk ChNTU, 125, 252–256.

Downloads

Published

2017-06-30

How to Cite

Kropyvnytska, V., Kopystynskyy, L., & Sementsov, G. (2017). Development of a set of methods for preforecasting fractal time series analysis to determine the level of persistence. Eastern-European Journal of Enterprise Technologies, 3(4 (87), 10–17. https://doi.org/10.15587/1729-4061.2017.104425

Issue

Section

Mathematics and Cybernetics - applied aspects