Simulation of nanomodified polymers testing by the electric capacitive method

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.108460

Keywords:

electric capacitive method, capacitive nondestructive testing, nanomodified polymers, carbon nanotubes

Abstract

At present, the issue of the electric capacitive method application for non-destructive testing of nanomodified polymer composite materials (NMPCM) is relevant. The paper gives a mathematical model based on Maxwell-Ampere, Faraday and Gauss’s equations and satisfying the Dirichlet boundary condition. This paper proposes a computer simulation of the nanomodified polymers testing by the electric capacitive method. The simulation was carried out in a two-dimensional planar formulation and a minimum required density of the calculated grid was determined (37,300 elements) to obtain a qualitative result of the calculation. A number of numerical studies were conducted with different contents of CNT in NMPCM in the range of 0 wt % up to 10 wt %, different defect depths in the material and distances from the sensor to the surface. The homogeneity of the dispersion is estimated using the Cochran statistical criterion. The value of the Cochren criterion did not exceed the critical one for all conducted experiments. Approximation relations of the maximum defect depth and distance from the sensor to the surface were obtained depending on the content of CNT in NMPCM. The results of the studies allowed determining the limits of the method application in the testing of NMPCM. The maximum defect depth was 5H (H is the relative value of the defect) at the CNT concentration of 1 wt % and with increasing the CNT concentration, the maximum defect depth decreases to 2H. The maximum distance between the sensor and the surface was 0.33H at the CNT concentration of more than 5 wt %. The obtained data can be used in the design of technological equipment for the polymeric nanocomposites production

Author Biographies

Victor Bazhenov, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of devices and systems for non-destructive testing

Anatoliy Protasov, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of pedagogical science, Associate professor, Head of Department

Department of devices and systems for non-destructive testing

Igor Ivitskiy, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD

Department of chemical, polymer and silica engineering

Darya Ivitska, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Postgraduate student

Department of devices and systems for non-destructive testing

References

  1. Mikhaylin, Yu. A. (2008). Konstruktsionnyye polimernyye kompozitsionnyye materialy. SPb.: Nauchnyye osnovy i tekhnologii, 822.
  2. Guadagno, L., Vertuccio, L., Sorrentino, A., Raimondo, M., Naddeo, C., Vittoria, V. et. al. (2009). Mechanical and barrier properties of epoxy resin filled with multi-walled carbon nanotubes. Carbon, 47 (10), 2419–2430. doi: 10.1016/j.carbon.2009.04.035
  3. Gorrasi, G., Di Lieto, R., Patimo, G., De Pasquale, S., Sorrentino, A. (2011). Structure-property relationships on uniaxially oriented carbon nanotube/polyethylene composites. Polymer, 52 (4), 1124–1132. doi: 10.1016/j.polymer.2011.01.008
  4. Sakharov, A. S., Gondlyakh, A. V., Strizhalo, A. V. (1997). On features of numerical integration for the equations of motion of laminated shell systems in the iterative analytic theory. International Applied Mechanics, 33 (9), 713–718. doi: 10.1007/bf02700668
  5. Nanocs. Carbon Nanotubes (2017). Available at: http://www.nanocs.com/nanotube.htm
  6. Klyuyev, V. V. (1995). Nerazrushayushchiy kontrol i diagnostika: Spravochnik. Moscow: Mashinostroyeniye, 656.
  7. Kolosov, A. E., Sivetskii, V. I., Kolosova, E. P., Lugovskaya, E. A. (2013). Procedure for analysis of ultrasonic cavitator with radiative plate. Chemical and Petroleum Engineering, 48 (11-12), 662–672. doi: 10.1007/s10556-013-9677-9
  8. Kolosov, A. E., Sakharov, A. S., Sivetskii, V. I., Sidorov, D. E., Sokolskii, A. L. (2012). Method of selecting efficient design and operating parameters for equipment used for the ultrasonic modification of liquid-polymer composites and fibrous fillers. Chemical and Petroleum Engineering, 48 (7-8), 459–466. doi: 10.1007/s10556-012-9640-1
  9. Sakharov, A. S., Kolosov, A. E., Sivetskii, V. I., Sokolskii, A. L. (2013). Modeling of Polymer Melting Processes in Screw Extruder Channels. Chemical and Petroleum Engineering, 49 (5-6), 357–363. doi: 10.1007/s10556-013-9755-z
  10. Protasov, A. (2009). Application of FEMLAB software for simulation of the thermal method for nondestructive testing. American Society for Engineering Education Annual Conference and Exposition, Conference Proceedings, 182, 14.219.1–14.219.9.
  11. Ivitskiy, I. I. (2014). Polymer wall slip modelling. Technology Audit and Production Reserves, 5 (3 (19)), 8–11. doi: 10.15587/2312-8372.2014.27927
  12. Sakharov, A. S., Sivetskii, V. I., Sokolskii, A. L. (2011). Extrusion molding of polymers with allowance for near-wall slip. Chemical and Petroleum Engineering, 47 (3-4), 231–237. doi: 10.1007/s10556-011-9451-9
  13. Ivitskiy, I. I., Sokolskiy, A. L., Mikulionok, I. O. (2017). Influence of a Lubricant on the Flow Parameters of a Molten Polymeric Material in Channels of Forming Devices. Chemical and Petroleum Engineering, 53 (1-2), 84–88. doi: 10.1007/s10556-017-0299-5
  14. Kovalenko, K. G., Kolosov, A. E., Sivetskii, V. I., Sokol’skii, A. L. (2014). Modeling Polymer Melt Flow at the Outlet from an Extruder Molding Tool. Chemical and Petroleum Engineering, 49 (11-12), 792–797. doi: 10.1007/s10556-014-9837-6
  15. Kolosov, A. E. (1988). Impregnation of fibrous fillers with polymer binders. 1. Kinetic equations of longitudinal and transverse impregnation. Mechanics of Composite Materials, 23 (5), 625–633. doi: 10.1007/bf00605688
  16. Diamond, G. G., Hutchins, D. A. (2006). A New Capacitive Imaging Technique for NDT. Eur. Conf. NDT, Berlin, Germany, Poster 229. Available at: http://www.ndt.net/article/ecndt2006/doc/P229.pdf
  17. Diamond, G. G., Hutchins, D. A., Leong, K. K., Gan, T. H. (2007). Electrostatic-capacitive imaging: a new NDE technique. AIP Conference Proceedings, 894, 689–694. doi: 10.1063/1.2718037
  18. Suh Nam, P., Tse, M.-K. (1983). An electrostatic charge decay technique for nondestructive evaluation of nonmetallic materials. Int. Adv. Nondestruct. Test., 9, 192–226.
  19. Shibata, T., Hashizume, H., Kitajima, S., Ogura, K. (2005). Experimental study on NDT method using electromagnetic waves. Journal of Materials Processing Technology, 161 (1-2), 348–352. doi: 10.1016/j.jmatprotec.2004.07.049
  20. Wen, J., Xia, Z., Choy, F. (2011). Damage detection of carbon fiber reinforced polymer composites via electrical resistance measurement. Composites Part B: Engineering, 42 (1), 77–86. doi: 10.1016/j.compositesb.2010.08.005
  21. Protasov, A. G., Gordienko, Y. G., Zasimchuk, E. E. (2006). Multilayer thin film sensors for damage diagnostics. AIP Conference Proceedings, 820 (1), 930–937. doi: 10.1063/1.2184625
  22. Bazhenov, V. G., Ivitska, D. K., Gruzin, S. V. (2013). Udoskonalenyy elektrostatychnyy metod neruynivnoho kontrolyu. Metody ta prylady kontrolyu yakosti, 2, 26–28.
  23. Bazhenov, V. G., Ivitska, D. K., Ovcharuk, S. A., Gruzin, S. V. (2015). Patent 112917 Ukraine: G 01 В 7/00, G 01 В 7/287, G 01 N 27/22. Elektrostatychnyy odnokanal'niy amplitudno-fazovyy sposib neruynivnoho kontrolyu, No. a201502540, 10.11.16, Bul. 21, 5.
  24. Ivitskiy, I., Sivetskiy, V., Bazhenov, V., Ivitska, D. (2017). Modeling the electrostatic control over depth of the introduction of intelligent sensors into a polymer composite material. Eastern-European Journal of Enterprise Technologies, 1 (5 (85)), 4–9. doi: 10.15587/1729-4061.2017.91659
  25. Grinberg, G. A. (1948). Izbrannyye voprosy matematicheskoy teorii elektricheskikh i magnitnykh yavleniy. Moscow: Izd. AN SSSR, 727.
  26. Sabet, M., Soleimani, H. (2014). Mechanical and electrical properties of low density polyethylene filled with carbon nanotubes. IOP Conference Series: Materials Science and Engineering, 64, 012001. doi: 10.1088/1757-899x/64/1/012001
  27. Ivitskiy, I. I., Sokolskiy, O. L., Kurilenko V. M. (2016). Simulation of intelligent sensors dipping into the melting polymer composite. Technology Audit and Production Reserves, 5 (3 (31)), 22–26. doi: 10.15587/2312-8372.2016.81236

Downloads

Published

2017-08-30

How to Cite

Bazhenov, V., Protasov, A., Ivitskiy, I., & Ivitska, D. (2017). Simulation of nanomodified polymers testing by the electric capacitive method. Eastern-European Journal of Enterprise Technologies, 4(5 (88), 4–9. https://doi.org/10.15587/1729-4061.2017.108460

Issue

Section

Applied physics