A study of phase transition processes features in liquid-gas systems

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.108535

Keywords:

thermal and physical characteristics of gas-saturated liquid, gas-to-steam bubble, heat transfer in two-phase medium, phase transformations

Abstract

The results of designing the mathematical model of non-stationary thermal conductivity of the bubble’s oscillating wall, with account of the changes in the aggregate state and the thermal and physical characteristics of the substance, are presented. It is shown that when applying the finite elements method, it is a system of nonlinear differential equations of the 1st order. Consideration of these features in the mathematical model allows obtaining the temperature values of liquid and solid phases at any time when changing the bubble’s size and the heat flow direction at its boundary.

Based on the suggested mathematical model, a series of assessment calculations was performed. Applying mathematical modeling, the temperature fields’ distribution in the liquid under the conditions of the phase transition processes and changes in the bubble size is obtained. The performed studies show that for an immobile bubble under the boundary condition of the 2nd kind, the icing and ice melting velocities are almost equal, but the temperature on the interphase gas-water surface is approximately four times exceeding the temperature on the gas-ice surface, which corresponds to the water and ice thermal conductivity ratio.

The temperature in the phase liquid-ice transition zone is practically constant. With the expansion of the bubble, liquid freezing and ice melting are going more than 1.6 times faster than in the immobile bubble. When compressing the bubble, the thickness of the ice formed or melted is approximately 1.7 times smaller than that of the immobile wall bubble. The analysis of the results obtained has shown that they are predictable and fully correspond to the physicists’ ideas of the heat transfer and phase transition processes flow in the liquid.

The suggested calculation method can be used to determine the thermal characteristics of the liquid and steam in various technological processes associated with gases dissolution in the liquid, foam hardening and gas hydrates formation. The mathematical model designed can be applied as a component for calculation of more complicated physical processes. The study results can be applied to optimize various technological processes associated with materials swelling, gases adsorption, liquids boiling and gas hydrates formation

Author Biographies

Anatoliy Pavlenko, Kielce University of Technology Tysiacholittia panstva Polskoho str., 7, Kielce, Poland, 25-314

Doctor of Technical Sciences, professor

Department of Building Physics and Renewable Energy

Bogdan Kutnyi, Poltava National Technical Yuri Kondratyuk University Pershotravnevyi ave., 24, Poltava, Ukraine, 36011

PhD, Associate Professor

Department of heat and gas supply, ventilation and heat and power engineering

Nachvan Abdullah, Poltava National Technical Yuri Kondratyuk University Pershotravnevyi ave., 24, Poltava, Ukraine, 36011

Postgraduate student

Department of heat and gas supply, ventilation and heat and power engineering

References

  1. Pavlenko, A. M., Basok, B. I. (2005). Regularities of Boiling-Up of Emulsified Liquids. Heat Transfer Research, 36 (5), 419–424. doi: 10.1615/heattransres.v36.i5.90
  2. Yakushev, V. S., Kvon, V. G., Gerasimov, Yu. A., Istomin, V. A. (2008). Sovremennoe sostoyanie gazogidratnyh tekhnologiy. Moscow: OOO «IRTS Gazprom», 88.
  3. Takeya, S., Ebinuma, T., Uchida, T., Nagao, J., Narita, H. (2002). Self-preservation effect and dissociation rates of CH4 hydrate. Journal of Crystal Growth, 237-239, 379–382. doi: 10.1016/s0022-0248(01)01946-7
  4. Stern, L. A., Circone, S., Kirby, S. H., Durham, W. B. (2003). Temperature, pressure, and compositional effects on anomalous or “self” preservation of gas hydrates. Canadian Journal of Physics, 81 (1-2), 271–283. doi: 10.1139/p03-018
  5. Behkish, A., Lemoine, R., Oukaci, R., Morsi, B. I. (2006). Novel correlations for gas holdup in large-scale slurry bubble column reactors operating under elevated pressures and temperatures. Chemical Engineering Journal, 115 (3), 157–171. doi: 10.1016/j.cej.2005.10.006
  6. Hashemi, S., Macchi, A., Servio, P. (2007). Dynamic Simulation of Gas Hydrate Formation in an Agitated Three-Phase Slurry Reactor. The 12th International Conference on Fluidization – New Horizons in Fluidization Engineering, 329–336.
  7. Shagapov, V. Sh., Koledin, V. V. (2013). K teoryi rosta parovyh puzyr'kov v metastabil'noy zhidkosti. Teplofizika vysokih temperature, 51 (4), 543–551. doi: 10.7868/s0040364413040212
  8. Veretel'nik, T. I., Difuchin, Yu. N. (2008). Matematicheskoe modelirovanie kavitatsionnogo potoka zhidkosti v himiko-tekhnologicheskoy sisteme. Visnyk ChDTU, 3, 82–85.
  9. Aktershev, S. P., Ovchinnikov, V. V. (2013). Modelirovanie vskipaniya metastabil'noy zhidkosti pri nalichii frontov ispareniya. Sovremennaya nauka: issledovaniya, idei, rezul'taty, tekhnologi, 1, 77–82.
  10. Nigmatulin, R. I., Habeev, N. S. (1978). Dinamika i teplomassoobmen parogazovyh puzyr'kov s zhidkost'yu. Nekotorye voprosy mekhaniki sploshnoy sredy. Moscow: In-t mekhaniki MGU, 229–243.
  11. Kulinchenko, V. R., Zavialov, V. L., Mysiura, T. H. (2007). Peredumovy stvorennia matematychnoi modeli – osnovni polozhennia i rivniannia rukhu Releia. Naukovi pratsi Natsionalnoho universytetu kharchovykh tekhnolohyi, 22, 36–41.
  12. Dolinskiy, A. A., Ivanitskiy, G. K. (1995). Teoreticheskoe obosnovanie printsipa diskretno-impul'snogo vvoda energyi. Model' dinamiki odinochnogo parovogo puzyr'ka. Prom. teplotekhnika, 17 (5), 3–28.
  13. Pavlenko, A. M., Basok, B. I. (2005). Kinetics of Water Evaporation from Emulsions. Heat Transfer Research, 36 (5), 425–430. doi: 10.1615/heattransres.v36.i5.100
  14. Butcher, J. C. (2008). Numerical Methods for Ordinary Differential Equations. New York: John Wiley & Sons, 482. doi: 10.1002/9780470753767
  15. Kushnir, S. V., Kost, M. V., Kozak, R. P. (2016). Barbotazhni khimichni efekty: yikh vydy, mekhanizmy vynyknennia ta heokhimichni proiavy. Nakovo-tekhnichni visti, 3 (20), 30–47.
  16. Ermolaeva, G. A., Kolcheva, P. A. (2000). Tekhnologiya i oborudovanie proizvodstva piva i bezalkogol'nyh napitkov. Moscow: IRPO; Izd. tsentr «Akademiya», 416.
  17. Mosin, O. V. (2012). Fiziko-himicheskie osnovy opresneniya morskoy vody. Soznanie i fizicheskaya real'nost', 1, 19–30.
  18. Semenov, M. E., Shits, E. Yu. (2013). Sintez gidratov gazov laboratornyh usloviyah. Tekhnicheskie nauki – ot teoryi k praktike. Novosibirsk: SibAK, 55–61.
  19. Okutani, K., Kuwabara, Y., Mori, Y. H. (2008). Surfactant effects on hydrate formation in an unstirred gas/liquid system: An experimental study using methane and sodium alkyl sulfates. Chemical Engineering Science, 63 (1), 183–194. doi: 10.1016/j.ces.2007.09.012
  20. Mel'nikov, V. P., Podenko, L. C., Nesterov, A. N., Reshetnikov, A. M. (2010). Relaksatsionnyy YAMR-analiz fazovyh prevrashcheniy vody v dispersnoy sisteme voda/gidrat freona -12/uglevodorod pri dissotsiatsyi gidrata. DAN, 433 (1), 59–61.

Downloads

Published

2017-08-30

How to Cite

Pavlenko, A., Kutnyi, B., & Abdullah, N. (2017). A study of phase transition processes features in liquid-gas systems. Eastern-European Journal of Enterprise Technologies, 4(5 (88), 43–50. https://doi.org/10.15587/1729-4061.2017.108535

Issue

Section

Applied physics