Examining the dynamics and modeling of oxygen regime of Chervonooskil water reservoir

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.109477

Keywords:

oxygen regime, biochemical oxygen demand, dissolved oxygen, Streeter-Phelps model

Abstract

The problems of deterioration of the ecological state of surface sources of drinking water supply especially concern water reservoirs since they are created for accumulation of water reserves. Biochemical oxygen demand and dissolved oxygen are integral indicators that characterize ecological state of a water body on the whole.

Based on retrospective observational data for 2010–2014, the authors analyzed dynamics of indicators of BOD and of dissolved oxygen in the Chervonooskil reservoir (Ukraine). The tendencies towards improving oxygen regime of the reservoir were detected: an increase in concentration of dissolved oxygen and a decrease in BOD by average annual indicators. This is explained by a decrease in anthropogenic load on the basin of the water body due to economic decline, which is a consequence of unfavorable political situation in the country.

Authors determined coefficients of biochemical oxidation of organic substances of the Streeter-Phelps model for the water reservoir. Given the influence of temperature on oxygen solubility and on the rate of biochemical processes, calculation of parameters k1 and k2 was performed for each month of the year. Correlation coefficient between the modeled and empirical values of biochemical oxygen demand is 0.86, which can be considered acceptable for such research

Author Biographies

Vitalii Bezsonnyi, O. M. Beketov National University of Urban Economy in Kharkiv Marshala Bazhanova str., 17, Kharkiv, Ukraine, 61002

Lead Engineer

Educational center "Megapolis"

Oleg Tretyakov, O. M. Beketov National University of Urban Economy in Kharkiv Marshala Bazhanova str., 17, Kharkiv, Ukraine, 61002

Doctor of technical sciences, Associate professor

Department of Safety of Vital Activity

Batyr Khalmuradov, National Aviation University Kosmonavta Komarova ave., 1, Kyiv, Ukraine, 03058

PhD, Associate Professor

Department of Safety of life

Roman Ponomarenko, National University Сivil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Senior Researcher

Department of fire and rescue training

References

  1. Pryazhinskaya, V. G., Yaroshevskiy, D. M., Levit-Gurevich, L. K. (2002). Komp'yuternoe modelirovanie v upravlenii vodnymi resursami. Moscow: FIZMATLIT, 496.
  2. Vyshnevskyi, V. I. (2000). Richky i vodoimy Ukrainy. Stan i vykorystannia. Kyiv: Vipol, 376.
  3. Osadchyi, V. I., Osadcha, N. M. (2006). Kysnevyi rezhym poverkhnevykh vod Ukrainy. Nauk. pr. UkrNDHMI, 256, 265–285.
  4. Osadchiy, V. I. (2006). Mnogoletnyaya dinamika i vnutrigodovoe raspredelenie rastvorennogo kisloroda v poverhnostnyh vodah Ukrainy. Hidrolohiya, hidrokhimiya, hidroekolohiya, 122–123.
  5. Romanenko, V. D., Zhukynskyi, V. M., Oksiyuk, O. P. (1998). Metodyka ekolohichnoi otsinky yakosti poverkhnevykh vod za vidpovidnymy katehoriyamy. Kyiv: Symvol-T, 28.
  6. Hrytsenko, A. V., Vasenko, O. H., Kolisnyk, A. V. et. al.; Hrytsenko, A. V., Vasenko, O. H. (Eds.) (2011). Suchasnyi ekolohichnyi stan ukrainskoi chastyny richky Siverskyi Donets (ekspedytsiyni doslidzhennia). Kharkiv: VPP «Kontrast», 340.
  7. Bezsonnyi, V. L., Tretiakov, O. V., Kravchuk, A. M., Statsenko, Yu. F. (2016). Prohnozuvannia kysnevoho rezhymu richky Siverskyi Donets metodamy matematychnoho modeliuvannia. Budivnytstvo, materialoznavstvo, mashynobuduvannia, 93, 113–119.
  8. Ukhan, O. O., Osadcha, N. M. (2010). Kharakterystyka kysnevoho rezhymu poverkhnevykh vod baseinu r. Siverskyi Donets. Naukovi pratsi UkrNDHMI, 259, 199–216.
  9. Mokin, V. B., Mokin, B. I. (2000). Matematychni modeli ta prohramy dlia otsiniuvannia yakosti richkovykh vod. Vinnytsia: Universum-Vinnytsia, 152.
  10. Tretiakov, O. V., Bezsonnyi, V. L. (2016). Osnovni metody matematychnoho modeliuvannia dlia metodychnoho zabezpechennia baseinovoho pidkhodu v upravlinni yakistiu vodnykh resursiv. Systemy obrobky informatsii, 8 (145), 194–199.
  11. Rogalev, A. N. (2012). Determinirovannye i stohasticheskie metody ocenki kachestva vody v usloviyah neopredelennosti. Raspredelennye informacionnye i vychislitel'nye resursy (DICR-2012), 101–112.
  12. Danilov-Danil'yan, V. I., Pryazhinskaya, V. G. (2006). Upravlenie vodnymi resursami v usloviyah klimaticheskih izmeneniy. Obosnovanie strategiy upravleniya vodnymi resursami. Moscow: Nauchniy mir, 62–76.
  13. Druzhinin, N. I., Shishkin, A. I. (1989). Matematicheskoe modelirovanie i prognozirovanie zagryazneniya poverhnostnyh vod sushi. Leningrad: Gidrometeoizdat, 390.
  14. Bek, M. B.; Svirezheva, Yu. M. (Ed.) (1981). Modelirovanie soderzhaniya rastvorennogo kisloroda na uchastke reki, dalekom ot estuariya. Matematicheskie modeli kontrolya zagryazneniya vody. Moscow: Mir, 165–199.
  15. Gotovcev, A. V. (2015). Opredelenie skorosti biohimicheskogo okisleniya i biohimicheskoy potrebnosti v kislorode tablichnym metodom. Nauchnoe obespechenie realizacii «Vodnoy strategii Rossiyskoy Federacii na period do 2020 g.». Petrozavodsk, 263–272.
  16. Mihaylov, M. D. (2010). Ob odnoy modifikacii modeli Stritera-Felpsa i ee chislennoy realizacii s pomoshch'yu mnogoprocessornyh vychislitel'nyh sistem. Vestnik tomskogo gosudarstvennogo universiteta. Seriya: Matematika i mekhanika, 1 (9), 39–46.
  17. Rogalev, A. N., Rogalev, A. A. (2011). Chislennaya realizaciya modeli Stritera-Felpsa i ee modifikaciy s uchetom neopredelennosti dannyh. Kubaturnye formuly, metody Monte-Karlo i ih prilozheniyaposvyashchennoy 90-letiyu so dnya rozhdeniya I. P. Mysovskih. Krasnoyarsk, 100–104.
  18. Ckhay, A. A. (2012). Matematicheskoe modelirovanie kachestva vody v proektiruemom vodohranilishche na osnove RK-BPK. Izvestiya Altayskogo gosudarstvennogo universiteta, 2 (1 (73)), 123–126.
  19. Volkova, T. A., Kondrat'ev, A. I. (2011). Osobennosti resheniya uravneniy Stritera-Felpsa dlya ocenki ekologicheskoy bezopasnosti morskoy akvatorii. Transportnoe delo Rossii, 7 (92), 120–122.
  20. Miao, D. Y., Li, Y. P., Huang, G. H., Yang, Z. F., Li, C. H. (2014). Optimization Model for Planning Regional Water Resource Systems under Uncertainty. Journal of Water Resources Planning and Management, 140 (2), 238–249. doi: 10.1061/(asce)wr.1943-5452.0000303
  21. Madani, K. (2010). Game theory and water resources. Journal of Hydrology, 381 (3-4), 225–238. doi: 10.1016/j.jhydrol.2009.11.045
  22. Hajkowicz, S., Collins, K. (2006). A Review of Multiple Criteria Analysis for Water Resource Planning and Management. Water Resources Management, 21 (9), 1553–1566. doi: 10.1007/s11269-006-9112-5
  23. Bravo, M., Gonzalez, I. (2009). Applying stochastic goal programming: A case study on water use planning. European Journal of Operational Research, 196 (3), 1123–1129. doi: 10.1016/j.ejor.2008.04.034
  24. Zoltay, V. I., Vogel, R. M., Kirshen, P. H., Westphal, K. S. (2010). Integrated Watershed Management Modeling: Generic Optimization Model Applied to the Ipswich River Basin. Journal of Water Resources Planning and Management, 136 (5), 566–575. doi: 10.1061/(asce)wr.1943-5452.0000083
  25. Tretiakov, O. V., Shevchenko, T. O., Bezsonnyi, V. L. (2015). Improving the environmental safety of drinking water supply in Kharkiv region (Ukraine). Eastern-European Journal of Enterprise Technologies, 5 (10 (77)), 40–49. doi: 10.15587/1729-4061.2015.51398
  26. Tretiakov, O. V., Bezsonnyi, V. L. (2015). Otsinka vplyvu stichnykh vod na ekolohichnyi stan richky Siverskyi Donets. Vestnik HNADU, 71, 103−108.

Downloads

Published

2017-10-24

How to Cite

Bezsonnyi, V., Tretyakov, O., Khalmuradov, B., & Ponomarenko, R. (2017). Examining the dynamics and modeling of oxygen regime of Chervonooskil water reservoir. Eastern-European Journal of Enterprise Technologies, 5(10 (89), 32–38. https://doi.org/10.15587/1729-4061.2017.109477