The procedure for determining the number of measurements in the normalization of random error of an information­measuring system with elements of artificial intelligence

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.109957

Keywords:

artificial intelligence, goniometric system, random component of the measurement error, mathematical statistics, mathematical analysis, probability theory

Abstract

Features of estimation and normalization of random components of the errors occurring in measurements with the help of goniometric systems were considered. A general procedure has been formulated that makes it possible to soundly determine the necessary and sufficient number of measurement repetitions to ensure accuracy and reliability of the obtained results. The procedure is based on application of mathematical apparatus of the probability theory, mathematical analysis and statistics, as well as the assumption that random errors obey the normal law of distribution of random quantities. Operatioability of the proposed procedure and effectiveness of its use have been experimentally confirmed. In particular, when comparing the obtained results with those in a similar work [7], the time taken to carry out measurements decreased by 1.3 times. That is, the effect of applying the proposed procedure is greater than the measurement costs while a high accuracy of 0.01 and reliability of 0.95 are maintained. The obtained results indicate the possibility of further extensive laboratory and industrial applications

Author Biographies

Iryna Cherepanska, Zhytomyr State Technological University Chudnivska str., 103, Zhуtomуr, Ukraine, 10005

PhD, Associate Professor

Department of automation and computer-integrated technologies named after prof. B. B. Samotokin

Olena Bezvesilna, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03057

Doctor of Technical Sciences, Professor

Department of Instrumentation

Artem Sazonov, Zhytomyr State Technological University Chudnivska str., 103, Zhуtomуr, Ukraine, 10005

PhD

Department of automation and computer-integrated technologies named after prof. B. B. Samotokin

Sergii Nechai, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03057

PhD, Associate Professor

Department of Instrumentation

Tetiana Khylchenko, Zhytomyr State Technological University Chudnivska str., 103, Zhуtomуr, Ukraine, 10005

Postgraduate student

Department of automation and computer-integrated technologies named after prof. B. B. Samotokin

References

  1. Cherepanska, I., Bezvesilna, E., Sazonov, A. (2016). Artificial Neural Network as a Basic Element of the Automated Goniometric System. Advances in Intelligent Systems and Computing, 43–51. doi: 10.1007/978-3-319-48923-0_6
  2. Cherepanska, I. Yu., Bezvesilna, O. M., Sazonov, A. Yu. (2016). Do pytannia pidvyshchennia tochnosti kutovykh vymiriuvan honiometrychnymy systemamy. Visnyk Zhytomyrskoho derzhavnoho tekhnolohichnoho universytetu. Seriya: Tekhnichni nauky, 1 (76), 92–99.
  3. Ivashchenko, E. M., Ivashchenko, E. M., Pavlov, P. A. (2010). Rezul'taty issledovaniya pogreshnosti goniometricheskoy sistemy. Izvestiya SPbGETU «LETI», 5, 98–103.
  4. Efremov, L. V. (2012). Problemy ucheta sluchaynyh i sistematicheskih pogreshnostey v pryamyh mnogokratnyh izmereniyah. Mir izmereniy, 10, 52–57.
  5. Gvozdev, V. D. (2012). Izmereniya odnokratnye i mnogokratnye: kriteriy nichtozhnoy pogreshnosti. Zakonodatel'naya i prikladnaya metrologiya, 2.
  6. Pavlov, P. A. (2008). Metod umen'sheniya sluchaynoy pogreshnosti lazernogo dinamicheskogo goniometra. Izmeritel'naya tekhnika, 7, 25–28.
  7. Bezvesilna, O. M. (2010). Avtomatyzovanyi pretsyziynyi prystriy dlia vymiriuvannia kutiv. Zhytomyr: ZhDTU, 258.
  8. Akizuki, K., Yamaguchi, K., Morita, Y., Ohashi, Y. (2016). The effect of proficiency level on measurement error of range of motion. Journal of Physical Therapy Science, 28 (9), 2644–2651. doi: 10.1589/jpts.28.2644
  9. Nussbaumer, S., Leunig, M., Glatthorn, J. F., Stauffacher, S., Gerber, H., Maffiuletti, N. A. (2010). Validity and test-retest reliability of manual goniometers for measuring passive hip range of motion in femoroacetabular impingement patients. BMC Musculoskeletal Disorders, 11 (1). doi: 10.1186/1471-2474-11-194
  10. Pavlov, P. A. (2008). A method of reducing the random error of a dynamic laser goniometer. Measurement Techniques, 51 (7), 734–739. doi: 10.1007/s11018-008-9109-y
  11. Koychubekov, B. K., Sorokina, M. A., Mhitaryan, K. E. (2014). Opredelenie razmera vyborki pri planirovanii nauchnogo issledovaniya. Mezhdunarodnyy zhurnal prikladnyh i fundamental'nyh issledovaniy, 4, 71–74.
  12. Rusupov, V. L. (2015). Metody opredeleniya kolichestva ekspertov. Vestnik IrGTU, 3 (98), 286–292.
  13. Shevchuk, V. P., Kaplya, V. I., Zheltonogov, A. P., Lyasin, D. N. (2005). Metrologiya intellektual'nyh izmeritel'nyh sistem. Volgograd, 210.
  14. Cherepanska, I. Yu., Kyryllovych, V. A., Sazonov, A. Yu., Samotokin, B. B. (2015). Planuvannia, modeliuvannia ta veryfikatsiya protsesiv u hnuchkykh vyrobnychykh systemakh. Praktykum. Zhytomyr: ZhDTU, 285.
  15. Kolker, Ya. D. (1976). Matematicheskiy analiz tochnosti mekhanicheskoy obrabotki detaley. Kyiv: Tekhnika, 200.
  16. Tomashevs'kiy, V. M. (2005). Modelyuvannya sistem. Kyiv: Vidavnicha grupa BHV, 352.

Downloads

Published

2017-10-19

How to Cite

Cherepanska, I., Bezvesilna, O., Sazonov, A., Nechai, S., & Khylchenko, T. (2017). The procedure for determining the number of measurements in the normalization of random error of an information­measuring system with elements of artificial intelligence. Eastern-European Journal of Enterprise Technologies, 5(9 (89), 58–67. https://doi.org/10.15587/1729-4061.2017.109957

Issue

Section

Information and controlling system