Modeling a flow pattern of the granular fill in the cross section of a rotating chamber

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.110444

Keywords:

granular fill, rotating chamber, three-phase flow mode, flow pattern, visualization

Abstract

The efficiency of working processes of machines of the drum type is determined by the mode of flow of the fill in a rotating chamber. But the numerical and experimental results obtained over a recent period approach the actual behavior of the examined medium only in terms of qualitative characteristics.

A mathematical model is built for a three-phase flow mode of granular fill in the cross section of a cylindrical chamber that rotates around the horizontal axis. The analytical-experimental research method is applied. A calculation algorithm is derived that approximately establishes position of the flow regions and the distribution of velocities in the cross sections normal to the flow direction, depending on the kinematic, geometrical, inertial, and rheological parameters of the system.

Based on the performed modeling, the effect of rotation velocity of the chamber on the characteristics of a three-phase flow mode of the fill was determined. We established conditions when mass fractions of the active sliding layer and the region of a non-free fall reach maximal values, while mass fraction of the passive quasi-solid-body region acquires a minimum value. The conditions are determined when thickness and mean velocity of the sliding layer reach a maximum.

We revealed a predominant reduction in thickness, in the average velocity and the shear rate gradient in the normal cross section along the length of the layer. A decrease in the thickness and an increase in the average velocity and the gradient of shear rate of the sliding layer were registered with a decrease in the relative size of the chamber granular fill’s element.

Visualization of flow patterns confirmed a convergence of the calculation results and experimental data within a range of 11–13 %

Author Biography

Yuriy Naumenko, National University of Water and Environmental Engineering Soborna str., 11, Rivne, Ukraine, 33028

Doctor of Technical Sciences, Associate Professor

Department of construction, road, reclamation, agricultural machines and equipment

References

  1. Naumenko, Yu. V. (1999). The antitorque moment in a partially filled horizontal cylinder. Theoretical Foundations of Chemical Engineering, 33 (1), 91–95.
  2. Naumenko, Yu. V. (2000). Determination of rational rotation speeds of horizontal drum machines. Metallurgical and Mining Industry, 5, 89–92.
  3. Liu, X., Ge, W., Xiao, Y., Li, J. (2008). Granular flow in a rotating drum with gaps in the side wall. Powder Technology, 182 (2), 241–249. doi: 10.1016/j.powtec.2007.06.029
  4. Yang, R. Y., Yu, A. B., McElroy, L., Bao, J. (2008). Numerical simulation of particle dynamics in different flow regimes in a rotating drum. Powder Technology, 188 (2), 170–177. doi: 10.1016/j.powtec.2008.04.081
  5. Liu, P. Y., Yang, R. Y., Yu, A. B. (2013). DEM study of the transverse mixing of wet particles in rotating drums. Chemical Engineering Science, 86, 99–107. doi: 10.1016/j.ces.2012.06.015
  6. Lu, G., Third, J. R., Müller, C. R. (2014). Effect of wall rougheners on cross-sectional flow characteristics for non-spherical particles in a horizontal rotating cylinder. Particuology, 12, 44–53. doi: 10.1016/j.partic.2013.03.003
  7. Cleary, P. W. (2015). A multiscale method for including fine particle effects in DEM models of grinding mills. Minerals Engineering, 84, 88–99. doi: 10.1016/j.mineng.2015.10.008
  8. Lu, G., Third, J. R., Müller, C. R. (2015). Discrete element models for non-spherical particle systems: From theoretical developments to applications. Chemical Engineering Science, 127, 425–465. doi: 10.1016/j.ces.2014.11.050
  9. Qi, H., Xu, J., Zhou, G., Chen, F., Ge, W., Li, J. (2015). Numerical investigation of granular flow similarity in rotating drums. Particuology, 22, 119–127. doi: 10.1016/j.partic.2014.10.012
  10. Norouzi, H. R., Zarghami, R., Mostoufi, N. (2015). Insights into the granular flow in rotating drums. Chemical Engineering Research and Design, 102, 12–25. doi: 10.1016/j.cherd.2015.06.010
  11. Zhang, Z., Gui, N., Ge, L., Li, Z. (2017). Numerical study of mixing of binary-sized particles in rotating tumblers on the effects of end-walls and size ratios. Powder Technology, 314, 164–174. doi: 10.1016/j.powtec.2016.09.072
  12. Gui, N., Yang, X., Tu, J., Jiang, S. (2017). Numerical simulation and analysis of mixing of polygonal particles in 2D rotating drums by SIPHPM method. Powder Technology, 318, 248–262. doi: 10.1016/j.powtec.2017.06.007
  13. Ma, H., Zhao, Y. (2017). Modelling of the flow of ellipsoidal particles in a horizontal rotating drum based on DEM simulation. Chemical Engineering Science, 172, 636–651. doi: 10.1016/j.ces.2017.07.017
  14. Wachs, A., Girolami, L., Vinay, G., Ferrer, G. (2012). Grains3D, a flexible DEM approach for particles of arbitrary convex shape – Part I: Numerical model and validations. Powder Technology, 224, 374–389. doi: 10.1016/j.powtec.2012.03.023
  15. Gan, J. Q., Zhou, Z. Y., Yu, A. B. (2016). A GPU-based DEM approach for modelling of particulate systems. Powder Technology, 301, 1172–1182. doi: 10.1016/j.powtec.2016.07.072
  16. Zhong, W., Yu, A., Liu, X., Tong, Z., Zhang, H. (2016). DEM/CFD-DEM Modelling of Non-spherical Particulate Systems: Theoretical Developments and Applications. Powder Technology, 302, 108–152. doi: 10.1016/j.powtec.2016.07.010
  17. Li, S., Yao, Q., Chen, B., Zhang, X., Ding, Y. L. (2007). Molecular dynamics simulation and continuum modelling of granular surface flow in rotating drums. Chinese Science Bulletin, 52 (5), 692–700. doi: 10.1007/s11434-007-0069-4
  18. Zheng, Q. J., Yu, A. B. (2015). Modelling the granular flow in a rotating drum by the Eulerian finite element method. Powder Technology, 286, 361–370. doi: 10.1016/j.powtec.2015.08.025
  19. Delele, M. A., Weigler, F., Franke, G., Mellmann, J. (2016). Studying the solids and fluid flow behavior in rotary drums based on a multiphase CFD model. Powder Technology, 292, 260–271. doi: 10.1016/j.powtec.2016.01.026
  20. Liu, Y., Gonzalez, M., Wassgren, C. (2017). Modeling granular material blending in a rotating drum using a finite element method and advection-diffusion equation multi-scale model. Arxiv.org. Available at: https://arxiv.org/ftp/arxiv/papers/1704/1704.01219.pdf
  21. Chou, H.-T., Lee, C.-F. (2008). Cross-sectional and axial flow characteristics of dry granular material in rotating drums. Granular Matter, 11 (1), 13–32. doi: 10.1007/s10035-008-0118-y
  22. Liu, X. Y., Xu, X., Zhang, Y. Y. (2011). Experimental Study on Time Features of Particle Motion in Rotating Drums. Chemical Engineering & Technology, 34 (6), 997–1002. doi: 10.1002/ceat.201000483
  23. Machado, M. V. C., Straatmann, V., Duarte, C. R., Barrozo, M. A. de S. (2017). Experimental Study of Charge Motion in a Tumbling Ball Mill. Materials Science Forum, 899, 119–123. doi: 10.4028/www.scientific.net/msf.899.119
  24. Chou, S. H., Hsiau, S. S. (2012). Dynamic properties of immersed granular matter in different flow regimes in a rotating drum. Powder Technology, 226, 99–106. doi: 10.1016/j.powtec.2012.04.024
  25. McElroy, L., Bao, J., Yang, R. Y., Yu, A. B. (2009). A soft-sensor approach to flow regime detection for milling processes. Powder Technology, 188 (3), 234–241. doi: 10.1016/j.powtec.2008.05.002
  26. Pérez-Alonso, C., Delgadillo, J. A. (2012). Experimental validation of 2D DEM code by digital image analysis in tumbling mills. Minerals Engineering, 25 (1), 20–27. doi: 10.1016/j.mineng.2011.09.018
  27. Santos, D. A., Petri, I. J., Duarte, C. R., Barrozo, M. A. S. (2013). Experimental and CFD study of the hydrodynamic behavior in a rotating drum. Powder Technology, 250, 52–62. doi: 10.1016/j.powtec.2013.10.003
  28. Cunha, R. N., Santos, K. G., Lima, R. N., Duarte, C. R., Barrozo, M. A. S. (2016). Repose angle of monoparticles and binary mixture: An experimental and simulation study. Powder Technology, 303, 203–211. doi: 10.1016/j.powtec.2016.09.023
  29. Machado, M. V. C., Santos, D. A., Barrozo, M. A. S., Duarte, C. R. (2017). Experimental and Numerical Study of Grinding Media Flow in a Ball Mill. Chemical Engineering & Technology. doi: 10.1002/ceat.201600508
  30. Nascimento, S. M., de Lima, F. P., Duarte, C. R., Barrozo, M. A. de S. (2017). Numerical Simulation and Experimental Study of Particle Dynamics in a Rotating Drum with Flights. Materials Science Forum, 899, 65–70. doi: 10.4028/www.scientific.net/msf.899.65
  31. Andreev, S. E., Perov, V. A., Zverevich, V. V. (1980). Droblenie, izmel'chenie i grohochenie poleznyh iskopaemyh. Moscow: Nedra, 415.
  32. Govender, I. (2016). Granular flows in rotating drums: A rheological perspective. Minerals Engineering, 92, 168–175. doi: 10.1016/j.mineng.2016.03.021
  33. Naumenko, Y. (2017). Modeling of fracture surface of the quasi solid-body zone of motion of the granular fill in a rotating chamber. Eastern-European Journal of Enterprise Technologies, 2 (1 (86)), 50–57. doi: 10.15587/1729-4061.2017.96447
  34. Naumenko, Y., Sivko, V. (2017). The rotating chamber granular fill shear layer flow simulation. Eastern-European Journal of Enterprise Technologies, 4 (7 (88)), 57–64. doi: 10.15587/1729-4061.2017.107242

Downloads

Published

2017-10-24

How to Cite

Naumenko, Y. (2017). Modeling a flow pattern of the granular fill in the cross section of a rotating chamber. Eastern-European Journal of Enterprise Technologies, 5(1 (89), 59–69. https://doi.org/10.15587/1729-4061.2017.110444

Issue

Section

Engineering technological systems