A study of the third-order nonlinear susceptibility and nonlinear absorption of inas in the middle infrared region

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.112339

Keywords:

nonlinear third-order susceptibility, four-wave interaction, narrow-band semiconductors, breakdown threshold

Abstract

Nonlinear susceptibilities of the third order χ(3) and the coefficient of nonlinear absorption in n-type InAs with a different degree of doping are measured at room and nitrogen temperatures. The values of the third-order nonlinear susceptibilities χ(3)107 esu derived from these measurements essentially exceed the values calculated on the basis of the model featuring the nonlinear susceptibility of the electrons, being in conduction-band nonparabolicity. It is shown, that the observed discrepancy is eliminated, if to consider a dissipation of energy of electrons in the calculation. The growth of efficiency in four-wave mixing in narrow-gap semiconductors is restricted to nonlinear absorption of interacting waves. It has been found that, nonlinear absorption in InAs is due to free holes that arise as a result of three-photon absorption. The breakdown threshold on the surface and constant of the nonlinear absorption in InAs were measured.

Author Biographies

Musaver Abdulsalam Musaev, Azerbaijan State Oil and Industry University Azadliq ave., 20, Baku, Azerbaijan, AZ 1010

Doctor of physical sciences, Professor

Ibrahim Isa Abbasov, Azerbaijan State Oil and Industry University Azadliq ave., 20, Baku, Azerbaijan, AZ 1010

PhD, Associate Professor

Aliashraf Latif Baxtiyarov, Azerbaijan State Oil and Industry University Azadliq ave., 20, Baku, Azerbaijan, AZ 1010

PhD, Associate Professor

References

  1. Lim, G.-K., Chen, Z.-L., Clark, J., Goh, R. G. S., Ng, W.-H., Tan, H.-W. et. al. (2011). Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nature Photonics, 5 (9), 554–560. doi: 10.1038/nphoton.2011.177
  2. Rumi, M., Perry, J. W. (2010). Two-photon absorption: an overview of measurements and principles. Advances in Optics and Photonics, 2 (4), 451. doi: 10.1364/aop.2.000451
  3. Jiang, X.-F., Polavarapu, L., Neo, S. T., Venkatesan, T., Xu, Q.-H. (2012). Graphene Oxides as Tunable Broadband Nonlinear Optical Materials for Femtosecond Laser Pulses. The Journal of Physical Chemistry Letters, 3 (6), 785–790. doi: 10.1021/jz300119t
  4. Tutt, L. W., Boggess, T. F. (1993). A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials. Progress in Quantum Electronics, 17 (4), 299–338. doi: 10.1016/0079-6727(93)90004-s
  5. Fan, H., Wang, X., Ren, Q., Li, T., Zhao, X., Sun, J. et. al. (2009). Third-order nonlinear optical properties in [(C4H9)4N]2[Cu(C3S5)2]-doped PMMA thin film using Z-scan technique in picosecond pulse. Applied Physics A, 99 (1), 279–284. doi: 10.1007/s00339-009-5521-7
  6. Boyd, R. W. (1999). Order-of-magnitude estimates of the nonlinear optical susceptibility. Journal of Modern Optics, 46 (3), 367–378. doi: 10.1080/095003499149791
  7. Boyd, R. W., Shi, Z., De Leon, I. (2014). The third-order nonlinear optical susceptibility of gold. Optics Communications, 326, 74–79. doi: 10.1016/j.optcom.2014.03.005
  8. Shcheslavskiy, V. I., Saltiel, S. M., Faustov, A. R., Petrov, G. I., Yakovlev, V. V. (2006). How to measure χ^(3) of a nanoparticle. Optics Letters, 31 (10), 1486. doi: 10.1364/ol.31.001486
  9. Liu, X., Zhou, X., Lu, C. (2005). Four-wave mixing assisted stability enhancement: theory, experiment, and application. Optics Letters, 30 (17), 2257. doi: 10.1364/ol.30.002257
  10. Shen, C., Zhang, H., Wang, D., Wang, J., Boughton, R. (2017). Optical Properties of the Fresnoite Ba2TiSi2O8 Single Crystal. Crystals, 7 (2), 53. doi: 10.3390/cryst7020053
  11. Badorreck, H., Nolte, S., Freytag, F., Bäune, P., Dieckmann, V., Imlau, M. (2015). Scanning nonlinear absorption in lithium niobate over the time regime of small polaron formation. Optical Materials Express, 5 (12), 2729. doi: 10.1364/ome.5.002729
  12. Zhang, C., Xiang, W., Luo, H., Liu, H., Liang, X., Ma, X. et. al. (2014). Third-order optical nonlinearity of Na2O–B2O3–SiO2 glass doped with lead nanoparticles prepared by sol–gel method. Journal of Alloys and Compounds, 602, 221–227. doi: 10.1016/j.jallcom.2014.03.005
  13. Wang, D., Li, T., Wang, S., Wang, J., Wang, Z., Ding, J. et. al. (2016). Effect of Fe3+on third-order optical nonlinearity of KDP single crystals. CrystEngComm, 18 (48), 9292–9298. doi: 10.1039/c6ce01877g
  14. Liaros, N., Orfanos, I., Papadakis, I., Couris, S. (2016). Nonlinear optical response of some Graphene oxide and Graphene fluoride derivatives. Optofluidics, Microfluidics and Nanofluidics, 3 (1), 53–58. doi: 10.1515/optof-2016-0009
  15. Johnston, A. M., Pidgeon, C. R., Dempsey, J. (1980). Frequency dependence of two-photon absorption in InSb andHg1−xCdxTe. Physical Review B, 22 (2), 825–831. doi: 10.1103/physrevb.22.825
  16. Sheik-bahaei, M., Mukherjee, P., Kwok, H. S. (1986). Two-photon and three-photon absorption coefficients of InSb. Journal of the Optical Society of America B, 3 (3), 379. doi: 10.1364/josab.3.000379
  17. Hasselbeck, M. P., Said, A. A., Van Stryland, E. W., Sheik-Bahae, M. (1998). Three-Photon Absorption in InAs. Optical and Quantum Electronics, 30 (3), 193–200. doi: 10.1023/a:1006962228937
  18. Hasselbeck, M. P., Van Stryland, E. W., Sheik-Bahae, M. (1997). Scaling of four-photon absorption in InAs. Journal of the Optical Society of America B, 14 (7), 1616. doi: 10.1364/josab.14.001616
  19. Madelung, O. (1967). Fizika poluprovodnikovyh soedineniy elementov III i V gruppy. Moscow: Mir, 478.
  20. Yariv, A., Pepper, D. M. (1977). Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing. Optics Letters, 1 (1), 16. doi: 10.1364/ol.1.000016
  21. Basov, N. G., Kovalev, V. I., Musaev, M. A., Feyzullov, F. S. (1986). Obrashcheniya volnovogo fronta izlucheniya impul'sa – lazera. Obrashchenie volnovogo fronta lazernogo izlucheniya. Moscow: Nauka.
  22. Uillardson, R., Vir, A. (Eds.) (1970). Opticheskie svoystva poluprovodnikov (poluprovodnikovye soedineniya tipa AIIIBV). Moscow: Mir, 488.
  23. Yuha, S., Blombergen, N.; V. Fayn, M. (Ed.) (1972). Nelineynye opticheskie vospriimchivosti soedineniy AIIIVV i elementarnyh poluprovodnikov VI gruppy. Nelineynye svoystva tverdyh tel. Moscow: Mir, 17–35.
  24. Yuen, S. Y., Wolff, P. A. (1982). Difference‐frequency variation of the free‐carrier‐induced, third‐order nonlinear susceptibility inn‐InSb. Applied Physics Letters, 40 (6), 457–459. doi: 10.1063/1.93147

Downloads

Published

2017-10-30

How to Cite

Musaev, M. A., Abbasov, I. I., & Baxtiyarov, A. L. (2017). A study of the third-order nonlinear susceptibility and nonlinear absorption of inas in the middle infrared region. Eastern-European Journal of Enterprise Technologies, 5(5 (89), 20–25. https://doi.org/10.15587/1729-4061.2017.112339

Issue

Section

Applied physics