Study of the sorption and desorption processes of sulfites on the anion-exchange redoxites

Authors

  • Mariia Shuryberko National Technical University of Ukraine "Kyiv Polytechnic Institute named Igor Sikorsky" Peremohy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-5283-2069
  • Nikolai Gomelia National Technical University of Ukraine "Kyiv Polytechnic Institute named Igor Sikorsky" Peremohy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-1165-7545
  • Tatiana Shabliy National Technical University of Ukraine "Kyiv Polytechnic Institute named Igor Sikorsky" Peremohy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-6710-9874
  • Viktoriia Tsveniuk National Technical University of Ukraine "Kyiv Polytechnic Institute named Igor Sikorsky" Peremohy ave., 37, Kyiv, Ukraine, 03056, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2017.118369

Keywords:

deoxygenation of water, redoxite, modification of ionites, water conditioning, anionite, sodium sulfite

Abstract

At present, one of the promising methods for conditioning natural waters is the stabilization that employs redoxites based on the ion-exchange materials. This method of water treatment makes it possible to significantly reduce corrosion aggressiveness of water. The use of modified cationites and anionites enables a more efficient process of purification, helps reduce economic expenses in the operation of water treatment equipment.

We investigated dependence of sorption capacity of the high-base anionite in the salt form AB-17-8 for sulfites on the starting concentration of the latter in a solution. It is shown that sorption is determined by the concentration factor. Thus, at an increase in the concentration of sodium sulfite to 10 %, the anionite capacity increases to 4,200 mg-equiv./dm3.

When using weakly-acidic anionites in the salt form and basic form (Dowex Marathon WBA and AMBERLITE IRA 96), the sorption capacity of ionites for sulfites increases with an increase in the concentration of solutions and reaches 5,000 mg-equiv./dm3.

We estimated effect of the concentration of chlorides, sulfates in water, which is fed for deoxygenation, on desorption of sulfite-anions form the high-base anionite AB-17-8 and the low-base anionite Dowex Marathon WBA. It is demonstrated that during filtration of solutions of chlorides and sulphates with different concentration the washout of sulfites occurs through the given anionites. Therefore, to prolong the time of use of the obtained redoxites, modified with sulfites, it is recommended to utilize desalinated water or water with an insignificant content of anions

Author Biographies

Mariia Shuryberko, National Technical University of Ukraine "Kyiv Polytechnic Institute named Igor Sikorsky" Peremohy ave., 37, Kyiv, Ukraine, 03056

Postgraduate student

Department of Ecology and Technology of Plant Polymers

Nikolai Gomelia, National Technical University of Ukraine "Kyiv Polytechnic Institute named Igor Sikorsky" Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor, Head of Department

Department of Ecology and Technology of Plant Polymers

Tatiana Shabliy, National Technical University of Ukraine "Kyiv Polytechnic Institute named Igor Sikorsky" Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Associate Professor

Department of Ecology and Technology of Plant Polymers

Viktoriia Tsveniuk, National Technical University of Ukraine "Kyiv Polytechnic Institute named Igor Sikorsky" Peremohy ave., 37, Kyiv, Ukraine, 03056

Department of Ecology and Technology of Plant Polymers

References

  1. Cervova, J., Hagarova, M., Lackova, P. (2014). Corrosive protection of metal materials in cooling water. American Journal of Materials Science and Application, 1, 6–10.
  2. Chichenin, V. V., Kishnevskiy, V. A., Gritsaenko, A. S., Ahrameev, V. G., Shulyak, I. D. (2015). Study of corrosion rate and accumulation of deposits under circulating water concentration in bench experiments. Eastern-European Journal of Enterprise Technologies, 5 (8 (77)), 14–20. doi: 10.15587/1729-4061.2015.51205
  3. Siwiec, T., Michel, M. M., Reczek, L., Nowak, P. (2015). The influence of aeration on the change in corrosiveness and aggressiveness of groundwater. Water Science and Technology: Water Supply, 16 (2), 445–452. doi: 10.2166/ws.2015.155
  4. Vasil'ev, V. V., Solodyannikova, Yu. V., Strelkov, A. K., Tsabilev, O. V. (2013). Otsenka tselesoobraznosti stabilizatsii hozyaystvenno-pitevoy vody. Vodosnabzhenie i sanitarnaya tekhnika, 8, 1–14.
  5. Popzhezinskyi, Yu. H., Pybalka, S. I. (2009). Novi tekhnolohichni pishennia v khimichniy dehazatsiy vody. Naukovi pratsi NUKhT, 32, 5–6.
  6. Medvediev, P. B., Mepdukh, S. L. (2013). Vodno-khimichnyi pezhym i matematychne modeliuvannia dpuhoho kontupu AES iz peaktopom typu VVEP – 1000. Naukovi visti NTUU KPI, 3, 132–139.
  7. Zhao, Z., Song, Y., Chen, J., Chu, G., Chen, J., Shao, L. (2017). Study of water deoxygenation using a rotor-stator reactor. Beijing Huagong Daxue Xuebao (Ziran Kexueban). Journal of Beijing University of Chemical Technology (Natural Science Edition), 44 (1), 13–17.
  8. Li, T., Yu, P., Luo, Y. (2014). Deoxygenation performance of polydimethylsiloxane mixed-matrix membranes for dissolved oxygen removal from water. Journal of Applied Polymer Science, 132 (4). doi: 10.1002/app.41350
  9. Shao, J., Liu, H., He, Y. (2008). Boiler feed water deoxygenation using hollow fiber membrane contactor. Desalination, 234 (1-3), 370–377. doi: 10.1016/j.desal.2007.09.106
  10. Martić, I., Maslarević, A., Mladenović, S., Lukić, U., Budimir, S. (2015). Water deoxygenation using hollow fiber membrane module with nitrogen as inert gas. Desalination and Water Treatment, 54 (6), 1563–1567. doi: 10.1080/19443994.2014.888677
  11. De Lafontaine, Y., Despatie, S.-P. (2014). Performance of a biological deoxygenation process for ships' ballast water treatment under very cold water conditions. Science of The Total Environment, 472, 1036–1043. doi: 10.1016/j.scitotenv.2013.11.116
  12. Tamazashvili, A. T., Kamaev, V. S., Gomelya, N. D. (2011). Otsenka effektivnosti pedoksitov v zavisimosti ot tipa kationita i sposoba ego modifikatsii. Enepgotekhnologii i pesupsosbepezhenie, 6, 58–62.
  13. Kipriyanova, E. S., Kravchenko, T. A., Konev, D. V., Kalinichev, A. I., Hell', V. H. (2010). Vosstanovitel'naya sorbtsiya molekulyarnogo kisloroda iz vody nanokompozitom serebro-sul'fokationoobmennik KU–23 razlichnoy ionnoy formy. Zhurnal fizicheskoy himii, 84 (6), 1104–1110.
  14. Polyanskiy, L. N., Gorshkov, V. S., Kravchenko, T. A. (2012). Predel'niy tok vosstanovleniya kisloroda nanokompozitom med'-ionoobmennik. Zhurnal fizicheskoy himii, 1, 121–127.
  15. Polyanskiy, L. N. (2014). Makrokinetika i dinamika redoks-sorbtsii kisloroda nanokompozitami metall-ionoobmennik pri elektrohimicheskoy polyarizatsii. Sorbtsionnye i hromatograficheskie protsessy, 5, 813–823.
  16. Egizarov, Yu. G., Volodin, A. Yu., Shunkevich, A. A., Cherches, B. H., Radkevich, V. Z., Gorbatsevich, M. F., Potapova, L. L. (2013). Voloknistye palladiysoderzhashchie katalizatory obeskislorozhivaniya vody. Vestsі natsyyanal'nay akademіі navuk Belarusі. Seriya hіmіchnyh navuk, 2, 41–49.
  17. Tamazashvili, А., Makarenko, І. (2015). Evaluation of the Reducing Ability of Anion Exchange Resin AV-17-8 in the Sulphite Form. Chemistry & Chemical Technology, 9 (1), 91–94. doi: 10.23939/chcht09.01.091
  18. Homelia, M. D., Tamazashvili, A. T. (2012). Evaluation of reducing ability of anion exchange resin AV-17-8 in sulphite form. Eastern-European Journal of Enterprise Technologies, 3 (6 (57)), 27–31. Available at: http://journals.uran.ua/eejet/article/view/4038/3702

Downloads

Published

2017-12-13

How to Cite

Shuryberko, M., Gomelia, N., Shabliy, T., & Tsveniuk, V. (2017). Study of the sorption and desorption processes of sulfites on the anion-exchange redoxites. Eastern-European Journal of Enterprise Technologies, 6(6 (90), 47–52. https://doi.org/10.15587/1729-4061.2017.118369

Issue

Section

Technology organic and inorganic substances