Development of mathematical model of methane oxidation on fibrous catalyst

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.118439

Keywords:

methane oxidation, specific surface, Runge-Kutta method, fibrous catalyst

Abstract

Using the experimental and numerical methods, the kinetics of deep methane oxidation on a fiber-like oxide catalyst with honeycomb structure is studied. ALSIFLEX-KT1600 fibers are used as a carrier, and spinel (% of mass) is used as a catalytic contact: MgAl2O4 – 22.07 %; NiO – 2.02 %; Cr2O3 – 3.49 %. Si+SiO2 adhesive – 18.97 % and organic glue – 1.72 are used to impart a stable honeycomb structure.

To complete the numerical analysis of kinetic data, a complete two-phase mathematical model is developed. The microchannel model is adopted as a basis. This model is characterized by the equality of the total area of the cross-sections of the microchannels and the area of the free section of the catalyst, and the total surface area of heat and mass transfer is equal to the specific surface area of the catalyst.

As a result of the work, the values of similarity, mass and heat transfer coefficients, the effective working surface of the catalyst, participating in the heterogeneously catalytic reaction of complete oxidation of methane Sw = 7640±150 m²/m³ are calculated.

The experimental kinetic data of methane oxidation on the catalyst have been confirmed by mathematical calculations, a refined microkinetic equation has been derived, the flow areas of the process have been established, and the performance of the synthesized catalyst has been established

Author Biographies

Alexey Popovich, Institute of Chemical Technologies Volodymyr Dahl East Ukrainian National University Volodymyrska str., 31, Rubizhne, Ukraine, 93009

Engineer

Department of General physics and technical mechanics

Gennadiy Soloviev, Institute of Chemical Technologies Volodymyr Dahl East Ukrainian National University Volodymyrska str., 31, Rubizhne, Ukraine, 93009

PhD, Associate Professor

Department of Ecology

Volodymyr Orlyk, Gas Institute of the NAS of Ukraine Degtyarivska str., 39, Kyiv, Ukraine, 03113

PhD, Leading Researcher

Alexander Suvorin, Volodymyr Dahl East Ukrainian National University Tsentralnyi ave., 59-a, Severodonetsk, Ukraine, 93400

Doctor of Technical Sciences, Professor

Department of chemical engineering and ecology 

References

  1. Vernikovskaya, N., Chasovnikova, A., Chumachenko, V. (2017). Modelirovanie protsessa okisleniya v trubchatyh elementah kataliticheskih nagrevateley. Himiya v interesah ustoychivogo razvitiya, 1, 5–10. doi: 10.15372/khur20170101
  2. Lashina, E., Kaichev, V., Chumakova, N., Ustyugov, V., Chumakov, G., Buhtiyarov, V. (2012). Matematicheskoe modelirovanie avtokolebaniy v reaktsii okisleniya metana na nikele: Izotermicheskaya model'. Kinetika i kataliz, 3, 389–399.
  3. Paharukov, I., Bobrov, N., Parmon, V. (2008). Issledovanie kinetiki glubokogo okisleniya metana s ispol'zovaniem usovershenstvovannogo protochno – tsirkulyatsionnogo metoda. Kataliz v promyshlennosti, 6, 11–16.
  4. Boukhalfa, N. (2016). Chemical Kinetic Modeling of Methane Combustion. Procedia Engineering, 148, 1130–1136. doi: 10.1016/j.proeng.2016.06.561
  5. Kazakov, D., Vol'hin, V., Zernina, I., Kosheleva, D. (2008). Opisanie biokataliticheskogo okisleniya metana s ispol'zovaniem modeley mnogosubstratnoy kinetiki. Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo, 3, 69–72.
  6. Yurchenko, V., Bahareva, A. (2012). Mathematical description of changes in specific rate of biological oxidation of methane. Eastern-European Journal of Enterprise Technologies, 1 (6 (55)), 4–6. Available at: http://journals.uran.ua/eejet/article/view/3388/3188
  7. Ahmadullina, L., Enikeeva, L., Novichkova, A., Gubaydullin, I. (2016). Matematicheskoe modelirovanie protsessa nizkotemperaturnoy parovoy konversii propana v prisutstvii metana na nikelevom katalizatore. Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 3, 117–126.
  8. Yakovlev, I., Zambalov, S., Skripnyak, V. (2014). Matematicheskoe modelirovanie protsessa polucheniya sintez – gaza v reaktore fil'tratsionnogo goreniya pri povyshennyh davleniyah. Vestnik Tomskogo Gosudarstvennogo Universiteta, 6, 103–120.
  9. Kuranov, A., Korabel'nikov, A., Mihaylov, A. (2017). Matematicheskoe modelirovanie konversii uglevodorodnogo topliva v elementah teplozashchity giperzvukovyh letatel'nyh apparatov. Zhurnal tekhnicheskoy fiziki, 87 (1), 27–33. doi: 10.21883/jtf.2017.01.44014.1856
  10. Dehimi, L., Benguerba, Y., Virginie, M., Hijazi, H. (2017). Microkinetic modelling of methane dry reforming over Ni/Al2O3 catalyst. International Journal of Hydrogen Energy, 42 (30), 18930–18940. doi: 10.1016/j.ijhydene.2017.05.231
  11. Cruz, B. M., da Silva, J. D. (2017). A two-dimensional mathematical model for the catalytic steam reforming of methane in both conventional fixed-bed and fixed-bed membrane reactors for the Production of hydrogen. International Journal of Hydrogen Energy, 42 (37), 23670–23690. doi: 10.1016/j.ijhydene.2017.03.019
  12. Ghahraloud, H., Farsi, M. (2017). Modeling and optimization of methanol oxidation over metal oxide catalyst in an industrial fixed bed reactor. Journal of the Taiwan Institute of Chemical Engineers, 81, 95–103. doi: 10.1016/j.jtice.2017.10.003
  13. Vatani, A., Jabbari, E., Askarieh, M., Torangi, M. A. (2014). Kinetic modeling of oxidative coupling of methane over Li/MgO catalyst by genetic algorithm. Journal of Natural Gas Science and Engineering, 20, 347–356. doi: 10.1016/j.jngse.2014.07.005
  14. Popovich, A., Soloviev, G., Suvorin, A. (2017). Research into methane oxidation on oxide catalyst of the applied type. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 29–34. doi: 10.15587/1729-4061.2017.107249

Downloads

Published

2017-12-13

How to Cite

Popovich, A., Soloviev, G., Orlyk, V., & Suvorin, A. (2017). Development of mathematical model of methane oxidation on fibrous catalyst. Eastern-European Journal of Enterprise Technologies, 6(6 (90), 33–40. https://doi.org/10.15587/1729-4061.2017.118439

Issue

Section

Technology organic and inorganic substances