Research into effect of electrochemical etching conditions on the morphology of porous gallium arsenide

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.118725

Keywords:

gallium arsenide, electrochemical etching, morphology, porous semiconductors, etching conditions

Abstract

The method for the formation of porous gallium arsenide in a solution of hydrochloric acid was improved. The goal of present research was to establish correlation between conditions of electrochemical etching of gallium arsenide crystals and morphology of low-dimensional structures. Porous layers were formed by the method of electrochemical etching in a solution of hydrochloric acid. The mode of electrolyte agitation was applied. This makes it possible to avoid the formation of bubbles on the surface of the crystal during etching and leads to the formation of regular porous space. Basic regularities in the formation of porous spaces were studied. It was shown that morphological properties of por-GaAs depend on etching conditions.

The effect was explored of current density on the thickness of a porous layer and diameter of pores. It was established that the composition and concentration of electrolyte correlate with surface porosity and affect the rate of crystal dissolution reaction. Etching time determines thickness of a porous layer and surface porosity. Chemical composition of por-GaAs was explored. An oxide layer was not formed on the surface of the examined samples; oxygen was present only in small concentrations. Stoichiometry of the samples was disrupted towards an excess of gallium atoms

Author Biographies

Sergij Vambol, National University of Civil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor, Head of Department

Department of Applied Mechanics

Ihor Bogdanov, Berdyansk State Pedagogical University Schmidta str., 4, Berdyansk, Ukraine, 71100

Doctor of Pedagogical Sciences, Professor, Rector

Viola Vambol, National University of Civil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Associate Professor

Department of Labour Protection and Technogenic and Ecological Safety

Yana Suchikova, Berdyansk State Pedagogical University Schmidta str., 4, Berdyansk, Ukraine, 71100

PhD, Associate Professor

Department of Vocational Education

Hanna Lopatina, Berdyansk State Pedagogical University Schmidta str., 4, Berdyansk, Ukraine, 71100

PhD, Associate Professor

Department of preschool, special and social education

Natalia Tsybuliak, Berdyansk State Pedagogical University Schmidta str., 4, Berdyansk, Ukraine, 71100

PhD

Department of preschool, special and social education

References

  1. Langa, S., Carstensen, J., Christophersen, M., Steen, K., Frey, S., Tiginyanu, I. M., Föll, H. (2005). Uniform and Nonuniform Nucleation of Pores during the Anodization of Si, Ge, and III-V Semiconductors. Journal of The Electrochemical Society, 152 (8), C525. doi: 10.1149/1.1940847
  2. Naddaf, M., Saloum, S. (2009). Nanostructuring-induced modification of optical properties of p-GaAs (100). Physica E: Low-Dimensional Systems and Nanostructures, 41 (10), 1784–1788. doi: 10.1016/j.physe.2009.06.086
  3. Naddaf, M., Saad, M. (2013). Novel optical and structural properties of porous GaAs formed by anodic etching of n+-GaAs in a HF:C2H5OH:HCl:H2O2:H2O electrolyte: effect of etching time. Journal of Materials Science: Materials in Electronics, 24 (7), 2254–2263. doi: 10.1007/s10854-013-1087-4
  4. Khrypunov, G., Vambol, S., Deyneko, N., Sychikova, Y. (2016). Increasing the efficiency of film solar cells based on cadmium telluride. Eastern-European Journal of Enterprise Technologies, 6 (5 (84)), 12–18. doi: 10.15587/1729-4061.2016.85617
  5. Mangla, O., Roy, S. (2015). A study on aberrations in energy band gap of quantum confined gallium arsenide spherical nanoparticles. Materials Letters, 143, 48–50. doi: 10.1016/j.matlet.2014.12.083
  6. Lebib, A., Ben Amara, E., Beji, L. (2017). Structural and luminescent characteristics of porous GaAs. Journal of Luminescence, 188, 337–341. doi: 10.1016/j.jlumin.2017.04.023
  7. Suchikova, Y. (2016). Provision of environmental safety through the use of porous semiconductors for solar energy sector. Eastern-European Journal of Enterprise Technologies, 6 (5 (84)), 26–33. doi: 10.15587/1729-4061.2016.85848
  8. Dubey, R. S. (2013). Electrochemical Fabrication of Porous Silicon Structures for Solar Cells. Nanoscience and Nanoengineering, 1 (1), 36–40.
  9. Suchikova, Y. A., Kidalov, V. V., Konovalenko, A. A., Sukach, G. A. (2010). Blue shift of photoluminescence spectrum of porous InP. ECS Transactions, 25 (24), 59–64. doi: 10.1149/1.3316113
  10. Beckemper, S. (2011). Generation of Periodic Micro- and Nano-structures by Parameter-Controlled Three-beam Laser Interference Technique. Journal of Laser Micro/Nanoengineering, 6 (1), 49–53. doi: 10.2961/jlmn.2011.01.0011
  11. Md Taib, M. I., Zainal, N., Hassan, Z. (2014). Improvement of Porous GaAs (100) Structure through Electrochemical Etching Based on DMF Solution. Journal of Nanomaterials, 2014, 1–7. doi: 10.1155/2014/294385
  12. Tiginyanu, I., Monaico, E., Sergentu, V., Tiron, A., Ursaki, V. (2014). Metallized Porous GaP Templates for Electronic and Photonic Applications. ECS Journal of Solid State Science and Technology, 4 (3), P57–P62. doi: 10.1149/2.0011503jss
  13. Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2010). Influence of the Carrier Concentration of Indium Phosphide on the Porous Layer Formation. Journal of Nano- and Electronic Physics, 2 (4), 142–147.
  14. Rajendran, V. (2009). Development of Nanomaterials from Natural Resources for Various Industrial Applications. Advanced Materials Research, 67, 71–76. doi: 10.4028/www.scientific.net/amr.67.71
  15. Efros, A. L., Nesbitt, D. J. (2016). Origin and control of blinking in quantum dots. Nature Nanotechnology, 11 (8), 661–671. doi: 10.1038/nnano.2016.140
  16. Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2009). Influence of type anion of electrolit on morphology porous inp obtained by electrochemical etching. Journal of Nano- and Electronic Physics, 1 (4), 111–118.
  17. Mangla, O., Srivastava, M. P. (2012). GaN nanostructures by hot dense and extremely non-equilibrium plasma and their characterizations. Journal of Materials Science, 48 (1), 304–310. doi: 10.1007/s10853-012-6746-y
  18. Malhotra, Y., Roy, S., Srivastava, M. P., Kant, C. R., Ostrikov, K. (2009). Extremely non-equilibrium synthesis of luminescent zinc oxide nanoparticles through energetic ion condensation in a dense plasma focus device. Journal of Physics D: Applied Physics, 42 (15), 155202. doi: 10.1088/0022-3727/42/15/155202
  19. Srivastava, A., Nahar, R. K., Sarkar, C. K., Singh, W. P., Malhotra, Y. (2011). Study of hafnium oxide deposited using Dense Plasma Focus machine for film structure and electrical properties as a MOS device. Microelectronics Reliability, 51 (4), 751–755. doi: 10.1016/j.microrel.2010.12.002
  20. Mangla, O., Srivastava, A., Malhotra, Y., Ostrikov, K. (2013). Lanthanum oxide nanostructured films synthesized using hot dense and extremely non-equilibrium plasma for nanoelectronic device applications. Journal of Materials Science, 49 (4), 1594–1605. doi: 10.1007/s10853-013-7842-3
  21. Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2011). Influence of dislocations on the process of pore formation in n-InP (111) single crystals. Semiconductors, 45 (1), 121–124. doi: 10.1134/s1063782611010192
  22. Lodahl, P., Mahmoodian, S., Stobbe, S. (2015). Interfacing single photons and single quantum dots with photonic nanostructures. Reviews of Modern Physics, 87 (2), 347–400. doi: 10.1109/piers.2016.7735045
  23. Beattie, N. S., Zoppi, G., See, P., Farrer, I., Duchamp, M., Morrison, D. J. et. al. (2014). Analysis of InAs/GaAs quantum dot solar cells using Suns- V oc measurements. Solar Energy Materials and Solar Cells, 130, 241–245. doi: 10.1016/j.solmat.2014.07.022
  24. Mei, L., Chen, Y., Ma, J. (2014). Gas Sensing of SnO2 Nanocrystals Revisited: Developing Ultra-Sensitive Sensors for Detecting the H2S Leakage of Biogas. Scientific Reports, 4 (1). doi: 10.1038/srep06028
  25. Shukla, S., Oturan, M. A. (2015). Dye removal using electrochemistry and semiconductor oxide nanotubes. Environmental Chemistry Letters, 13 (2), 157–172. doi: 10.1007/s10311-015-0501-y
  26. Monaico, E., Tiginyanu, I., Volciuc, O., Mehrtens, T., Rosenauer, A., Gutowski, J., Nielsch, K. (2014). Formation of InP nanomembranes and nanowires under fast anodic etching of bulk substrates. Electrochemistry Communications, 47, 29–32. doi: 10.1016/j.elecom.2014.07.015
  27. Gerngross, M.-D., Carstensen, J., Föll, H. (2014). Electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes: FFT-impedance spectroscopy of the growth process and magnetic properties. Nanoscale Research Letters, 9 (1), 316. doi: 10.1186/1556-276x-9-316
  28. Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2010). Preparation of nanoporous n-InP(100) layers by electrochemical etching in HCI solution. Functional Materials, 17 (1), 131–134.
  29. Vambol, S., Bogdanov, I., Vambol, V., Suchikova, Y., Kondratenko, O., Hurenko, O., Onishchenko, S. (2017). Research into regularities of pore formation on the surface of semiconductors. Eastern-European Journal of Enterprise Technologies, 3 (5 (87)), 37–44. doi: 10.15587/1729-4061.2017.104039
  30. Suchikova, Y. A., Kidalov, V. V., Balan, O. S., Sukach, G. A. (2010). Texturation of the Phosphide Indium Surface. Journal of Nano- and Electronic Physics, 2 (1), 50–53.
  31. Lazarenko, A. S. (2011). Model of Formation of Nano–Sized Whiskers Out of Channels of the Triple Junctions of Grain Boundaries of Polycrystal. Journal of Nano- and Electronic Physics, 3 (4), 59–64.
  32. Koshevoi, V. L., Belorus, A. O. (2017). Study of producing sensors based on porous layers of GaP: Te semiconductors with the use of electrodiffusion contacts. 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). doi: 10.1109/eiconrus.2017.7910833
  33. Makhnij, V. P., German, I. I., Sklarchuk, V. M. (2015). Optical properties of microporous n-GaAs. Telecommunications and Radio Engineering, 74 (16), 1467–1472. doi: 10.1615/telecomradeng.v74.i16.60
  34. Monaico, E., Colibaba, G., Nedeoglo, D., Nielsch, K. (2014). Porosification of III–V and II–VI Semiconductor Compounds. Journal of Nanoelectronics and Optoelectronics, 9 (2), 307–311. doi: 10.1166/jno.2014.1581
  35. Vambol, S., Vambol, V., Sychikova, Y., Deyneko, N. (2017). Analysis of the ways to provide ecological safety for the products of nanotechnologies throughout their life cycle. Eastern-European Journal of Enterprise Technologies, 1 (10 (85)), 27–36. doi: 10.15587/1729-4061.2017.85847
  36. Wloka, J., Mueller, K., Schmuki, P. (2005). Pore Morphology and Self-Organization Effects during Etching of n-Type GaP(100) in Bromide Solutions. Electrochemical and Solid-State Letters, 8 (12), B72. doi: 10.1149/1.2103507
  37. Chai, X., Weng, Z., Xu, L., Wang, Z. (2015). Tunable Electrochemical Oscillation and Regular 3D Nanopore Arrays of InP. Journal of the Electrochemical Society, 162 (9), E129–E133. doi: 10.1149/2.0341509jes
  38. Bioud, Y. A., Boucherif, A., Belarouci, A., Paradis, E., Drouin, D., Arès, R. (2016). Chemical Composition of Nanoporous Layer Formed by Electrochemical Etching of p-Type GaAs. Nanoscale Research Letters, 11 (1). doi: 10.1186/s11671-016-1642-z
  39. Steele, J. A., Lewis, R. A., Sirbu, L., Enachi, M., Tiginyanu, I. M., Skuratov, V. A. (2015). Optical reflectance studies of highly specular anisotropic nanoporous (111) InP membrane. Semiconductor Science and Technology, 30 (4), 044003. doi: 10.1088/0268-1242/30/4/044003
  40. Ulin, V. P., Konnikov, S. G. (2007). Electrochemical pore formation mechanism in III–V crystals (Part I). Semiconductors, 41 (7), 832–844. doi: 10.1134/s1063782607070111
  41. Sychikova, Y. A., Kidalov, V. V., Sukach, G. A. (2013). Dependence of the threshold voltage in indium-phosphide pore formation on the electrolyte composition. Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques, 7 (4), 626–630. doi: 10.1134/s1027451013030130
  42. Dzhafarov, T.; Morales-Acevedo, A. (Ed.) (2013). Silicon Solar Cells with Nanoporous Silicon Layer. Solar Cells – Research and Application Perspectives. doi: 10.5772/51593
  43. Heidari, M., Yan, J. (2017). Ultraprecision surface flattening of porous silicon by diamond turning. Precision Engineering, 49, 262–277. doi: 10.1016/j.precisioneng.2017.02.015
  44. Hooda, S., Khan, S. A., Satpati, B., Uedono, A., Sellaiyan, S., Asokan, K. et. al. (2016). Nanopores formation and shape evolution in Ge during intense ionizing irradiation. Microporous and Mesoporous Materials, 225, 323–330. doi: 10.1016/j.micromeso.2016.01.006
  45. Ching, C. G., Ooi, P. K., Ng, S. S., Ahmad, M. A., Hassan, Z., Abu Hassan, H., Abdullah, M. J. (2013). Fabrication of porous ZnO via electrochemical etching using 10wt% potassium hydroxide solution. Materials Science in Semiconductor Processing, 16 (1), 70–76. doi: 10.1016/j.mssp.2012.06.017
  46. Hamann, E., Koenig, T., Zuber, M., Cecilia, A., Tyazhev, A., Tolbanov, O. et. al. (2015). Performance of a Medipix3RX Spectroscopic Pixel Detector With a High Resistivity Gallium Arsenide Sensor. IEEE Transactions on Medical Imaging, 34 (3), 707–715. doi: 10.1109/tmi.2014.2317314
  47. Takamoto, T., Washio, H., Juso, H. (2014). Application of InGaP/GaAs/InGaAs triple junction solar cells to space use and concentrator photovoltaic. 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC). doi: 10.1109/pvsc.2014.6924936
  48. Dai, X., Zhang, S., Wang, Z., Adamo, G., Liu, H., Huang, Y. et. al. (2014). GaAs/AlGaAs Nanowire Photodetector. Nano Letters, 14 (5), 2688–2693. doi: 10.1021/nl5006004
  49. Jin, Z., Guo, L., Xiao, L., Liang, R., Wang, J. (2016). Epitaxial growth of GaN on porous Si (111) substrate. 2016 5th International Symposium on Next-Generation Electronics (ISNE). doi: 10.1109/isne.2016.7543306
  50. Suchikova, Y. A. (2015). Synthesis of indium nitride epitaxial layers on a substrate of porous indium phosphide. Journal of Nano- and Electronic Physics, 7 (3), 03017-1–03017-3.
  51. Trindade, T., O’Brien, P., Pickett, N. L. (2001). Nanocrystalline Semiconductors: Synthesis, Properties, and Perspectives. Chemistry of Materials, 13 (11), 3843–3858. doi: 10.1021/cm000843p
  52. Suchikova, Y. O. (2017). Sulfide Passivation of Indium Phosphide Porous Surfaces. Journal of Nano- and Electronic Physics, 9 (1), 01006-1–01006-4. doi: 10.21272/jnep.9(1).01006
  53. Yana, S. (2015). Porous Indium Phosphide: Preparation and Properties. Handbook of Nanoelectrochemistry, 283–305. doi: 10.1007/978-3-319-15266-0_28
  54. Bechambi, O., Chalbi, M., Najjar, W., Sayadi, S. (2015). Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity. Applied Surface Science, 347, 414–420. doi: 10.1016/j.apsusc.2015.03.049
  55. Wu, X. S., Miao, R., Si, Y. D., Lou, C. M., Xu, D. X., Chu, X. N. (2014). Surface Spot Defects Inspection of Multi-Crystalline Silicon Wafers Based on HALCON. Advanced Materials Research, 1081, 241–245. doi: 10.4028/www.scientific.net/amr.1081.241
  56. Vikhrov, S. P., Bodyagin, N. V., Larina, T. G., Mursalov, S. M. (2005). Growth processes of noncrystalline semiconductors from positions of the self–organizing theory. Semiconductors, 39 (8), 953–959.

Downloads

Published

2017-12-18

How to Cite

Vambol, S., Bogdanov, I., Vambol, V., Suchikova, Y., Lopatina, H., & Tsybuliak, N. (2017). Research into effect of electrochemical etching conditions on the morphology of porous gallium arsenide. Eastern-European Journal of Enterprise Technologies, 6(5 (90), 22–31. https://doi.org/10.15587/1729-4061.2017.118725

Issue

Section

Applied physics