Plasma-chemical formation of silver nanodispersion in water solutions
DOI:
https://doi.org/10.15587/1729-4061.2017.118914Keywords:
low-temperature plasma, conventional methods, chemical deposition, IR radiation, sodium alginate, aggregation, microphotographsAbstract
The application of plasma discharges of different methods of generation is an innovative, environmentally safe and promising method of synthesizing silver nanodispersions. The efficiency of using the contact nonequilibrium low-temperature plasma in comparison with the conventional method of chemical reduction in solutions and photochemical deposition is investigated. Plasma-chemical synthesis of silver nanodispersions from water AgNO3 solutions without the use of additional reducing reagents and in the presence of sodium alginate stabilizing reagent is carried out. It is found that the yield of silver nanoparticles in the plasma-chemical synthesis is 95.10–97.17 %. The obtained data are obtained by the chemical reduction method in solutions (93.9 %) and photochemical deposition (20.0 %). It is found that in the plasma-chemical synthesis of silver nanodispersions, the introduction of sodium alginate into the reaction mixture increases the yield of silver nanoparticles and allows synthesizing stable colloidal silver solutions. It is shown that the formation of silver nanodispersions under plasma discharge is characterized by the presence of the peak λmax=400–420 nm. The formation of silver nanoparticles was confirmed by the X-ray diffraction analysis. Microscopic examination (SEM) indicates that the size of the formed silver particles is up to 100 nm. The mechanism of synthesizing silver nanoparticles in the sodium alginate solution under plasma discharge is proposed. The obtained data testify to the promising application of the nonequilibrium plasma for the controlled synthesis of silver nanodispersions and the need for further research in this directionReferences
- Abou El-Nour, K. M. M., Eftaiha, A., Al-Warthan, A., Ammar, R. A. A. (2010). Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry, 3 (3), 135–140. doi: 10.1016/j.arabjc.2010.04.008
- Rai, M., Yadav, A., Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27 (1), 76–83. doi: 10.1016/j.biotechadv.2008.09.002
- Marambio-Jones, C., Hoek, E. M. V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12 (5), 1531–1551. doi: 10.1007/s11051-010-9900-y
- Krutyakov, Y. A., Kudrinskiy, A. A., Olenin, A. Y., Lisichkin, G. V. (2008). Synthesis and properties of silver nanoparticles: advances and prospects. Russian Chemical Reviews, 77 (3), 233–257. doi: 10.1070/rc2008v077n03abeh003751
- Saito, G., Akiyama, T. (2015). Nanomaterial Synthesis Using Plasma Generation in Liquid. Journal of Nanomaterials, 2015, 1–21. doi: 10.1155/2015/123696
- Mariotti, D., Sankaran, R. M. (2010). Microplasmas for nanomaterials synthesis. Journal of Physics D: Applied Physics, 43 (32), 323001. doi: 10.1088/0022-3727/43/32/323001
- Richmonds, C., Sankaran, R. M. (2008). Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Applied Physics Letters, 93 (13), 131501. doi: 10.1063/1.2988283
- Chen, Q., Kaneko, T., Hatakeyama, R. (2012). Rapid synthesis of water-soluble gold nanoparticles with control of size and assembly using gas-liquid interfacial discharge plasma. Chemical Physics Letters, 521, 113–117. doi: 10.1016/j.cplett.2011.11.065
- Koo, I. G., Lee, M. S., Shim, J. H., Ahn, J. H., Lee, W. M. (2005). Platinum nanoparticles prepared by a plasma-chemical reduction method. Journal of Materials Chemistry, 15 (38), 4125. doi: 10.1039/b508420b
- Chiang, W.-H., Sankaran, R. M. (2007). Microplasma synthesis of metal nanoparticles for gas-phase studies of catalyzed carbon nanotube growth. Applied Physics Letters, 91 (12), 121503. doi: 10.1063/1.2786835
- Chiang, W.-H., Sankaran, R. M. (2008). Synergistic Effects in Bimetallic Nanoparticles for Low Temperature Carbon Nanotube Growth. Advanced Materials, 20 (24), 4857–4861. doi: 10.1002/adma.200801006
- Sato, S., Mori, K., Ariyada, O., Atsushi, H., Yonezawa, T. (2011). Synthesis of nanoparticles of silver and platinum by microwave-induced plasma in liquid. Surface and Coatings Technology, 206 (5), 955–958. doi: 10.1016/j.surfcoat.2011.03.110
- Pivovarov, A. A., Kravchenko, A. V., Tishchenko, A. P., Nikolenko, N. V., Sergeeva, O. V., Vorob’eva, M. I., Treshchuk, S. V. (2015). Contact nonequilibrium plasma as a tool for treatment of water and aqueous solutions: Theory and practice. Russian Journal of General Chemistry, 85 (5), 1339–1350. doi: 10.1134/s1070363215050497
- Frolova, L., Pivovarov, A., Tsepich, E. (2016). Non-equilibrium Plasma-Assisted Hydrophase Ferritization in Fе2+–Ni2+–SO4 2−–OH− System. Nanophysics, Nanophotonics, Surface Studies, and Applications, 213–220. doi: 10.1007/978-3-319-30737-4_18
- Vorobiova, M. I., Pivovarov, O. A., Vorobiova, V. I., Frolova, L. A. (2014). Synthesis of gold nanoparticles from aqueous solutions of chloroauric acid with plasma-chemical method. Eastern-European Journal of Enterprise Technologies, 4 (5 (70)), 39–44. doi: 10.15587/1729-4061.2014.26262
- Sergeeva, O. V., Pivovarov, A. A. (2015). Poluchenie nanorazmernyh chastits serebra v vodnom rastvore pod deystviem kontaktnoy neravnovesnoy nizkotemperaturnoy plazmy. Visnyk NTU «KhPI», 22 (1131), 10–13.
- Ershov, B. G., Janata, E., Henglein, A., Fojtik, A. (1993). Silver atoms and clusters in aqueous solution: absorption spectra and the particle growth in the absence of stabilizing Ag+ ions. The Journal of Physical Chemistry, 97 (18), 4589–4594. doi: 10.1021/j100120a006
- Baetzold, R. C. (2015). Silver–Water Clusters: A Theoretical Description of Agn(H2O)m for n=1–4; m=1–4. The Journal of Physical Chemistry C, 119 (15), 8299–8309. doi: 10.1021/jp512556g
- Treguer, M., Rocco, F., Lelong, G., Le Nestour, A., Cardinal, T., Maali, A., Lounis, B. (2005). Fluorescent silver oligomeric clusters and colloidal particles. Solid State Sciences, 7 (7), 812–818. doi: 10.1016/j.solidstatesciences.2005.01.017
- Abdel-Halim, E. S., Al-Deyab, S. S. (2011). Utilization of hydroxypropyl cellulose for green and efficient synthesis of silver nanoparticles. Carbohydrate Polymers, 86 (4), 1615–1622. doi: 10.1016/j.carbpol.2011.06.072
- Bogle, K. A., Dhole, S. D., Bhoraskar, V. N. (2006). Silver nanoparticles: synthesis and size control by electron irradiation. Nanotechnology, 17 (13), 3204–3208. doi: 10.1088/0957-4484/17/13/021
- Qin, Y., Ji, X., Jing, J., Liu, H., Wu, H., Yang, W. (2010). Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 372 (1-3), 172–176. doi: 10.1016/j.colsurfa.2010.10.013
- Theivasanthi, T., Alagar, M. (2012). Electrolytic Synthesis and Characterization of Silver Nanopowder. Nano Biomedicine and Engineering, 4 (2). doi: 10.5101/nbe.v4i2.p58-65
- Mohan, Y. M., Raju, K. M., Sambasivudu, K., Singh, S., Sreedhar, B. (2007). Preparation of acacia-stabilized silver nanoparticles: A green approach. Journal of Applied Polymer Science, 106 (5), 3375–3381. doi: 10.1002/app.26979
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Margarita Skiba, Alexander Pivovarov, Anna Makarova, Oleksandr Pasenko, Aleksey Khlopytskyi, Viktoria Vorobyova
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.