Plasma-chemical formation of silver nanodispersion in water solutions

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.118914

Keywords:

low-temperature plasma, conventional methods, chemical deposition, IR radiation, sodium alginate, aggregation, microphotographs

Abstract

The application of plasma discharges of different methods of generation is an innovative, environmentally safe and promising method of synthesizing silver nanodispersions. The efficiency of using the contact nonequilibrium low-temperature plasma in comparison with the conventional method of chemical reduction in solutions and photochemical deposition is investigated. Plasma-chemical synthesis of silver nanodispersions from water AgNO3 solutions without the use of additional reducing reagents and in the presence of sodium alginate stabilizing reagent is carried out. It is found that the yield of silver nanoparticles in the plasma-chemical synthesis is 95.10–97.17 %. The obtained data are obtained by the chemical reduction method in solutions (93.9 %) and photochemical deposition (20.0 %). It is found that in the plasma-chemical synthesis of silver nanodispersions, the introduction of sodium alginate into the reaction mixture increases the yield of silver nanoparticles and allows synthesizing stable colloidal silver solutions. It is shown that the formation of silver nanodispersions under plasma discharge is characterized by the presence of the peak λmax=400–420 nm. The formation of silver nanoparticles was confirmed by the X-ray diffraction analysis. Microscopic examination (SEM) indicates that the size of the formed silver particles is up to 100 nm. The mechanism of synthesizing silver nanoparticles in the sodium alginate solution under plasma discharge is proposed. The obtained data testify to the promising application of the nonequilibrium plasma for the controlled synthesis of silver nanodispersions and the need for further research in this direction

Author Biographies

Margarita Skiba, Ukrainian State University of Chemical Technology Gagarinа ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of inorganic substances and Ecology 

Alexander Pivovarov, Ukrainian State University of Chemical Technology Gagarinа ave., 8, Dnipro, Ukraine, 49005

Doctor of Technical Sciences, Professor

Department of Inorganic Materials Technology and Ecology

Anna Makarova, Ukrainian State University of Chemical Technology Gagarinа ave., 8, Dnipro, Ukraine, 49005

Postgraduate Student

Department of Inorganic Materials Technology and Ecology

Oleksandr Pasenko, Ukrainian State University of Chemical Technology Gagarinа ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Inorganic matters technology and ecology

Aleksey Khlopytskyi, Ukrainian State University of Chemical Technology Gagarinа ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Inorganic matters technology and ecology

Viktoria Vorobyova, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Senior Lecturer

Department of Physical Chemistry 

References

  1. Abou El-Nour, K. M. M., Eftaiha, A., Al-Warthan, A., Ammar, R. A. A. (2010). Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry, 3 (3), 135–140. doi: 10.1016/j.arabjc.2010.04.008
  2. Rai, M., Yadav, A., Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27 (1), 76–83. doi: 10.1016/j.biotechadv.2008.09.002
  3. Marambio-Jones, C., Hoek, E. M. V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12 (5), 1531–1551. doi: 10.1007/s11051-010-9900-y
  4. Krutyakov, Y. A., Kudrinskiy, A. A., Olenin, A. Y., Lisichkin, G. V. (2008). Synthesis and properties of silver nanoparticles: advances and prospects. Russian Chemical Reviews, 77 (3), 233–257. doi: 10.1070/rc2008v077n03abeh003751
  5. Saito, G., Akiyama, T. (2015). Nanomaterial Synthesis Using Plasma Generation in Liquid. Journal of Nanomaterials, 2015, 1–21. doi: 10.1155/2015/123696
  6. Mariotti, D., Sankaran, R. M. (2010). Microplasmas for nanomaterials synthesis. Journal of Physics D: Applied Physics, 43 (32), 323001. doi: 10.1088/0022-3727/43/32/323001
  7. Richmonds, C., Sankaran, R. M. (2008). Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Applied Physics Letters, 93 (13), 131501. doi: 10.1063/1.2988283
  8. Chen, Q., Kaneko, T., Hatakeyama, R. (2012). Rapid synthesis of water-soluble gold nanoparticles with control of size and assembly using gas-liquid interfacial discharge plasma. Chemical Physics Letters, 521, 113–117. doi: 10.1016/j.cplett.2011.11.065
  9. Koo, I. G., Lee, M. S., Shim, J. H., Ahn, J. H., Lee, W. M. (2005). Platinum nanoparticles prepared by a plasma-chemical reduction method. Journal of Materials Chemistry, 15 (38), 4125. doi: 10.1039/b508420b
  10. Chiang, W.-H., Sankaran, R. M. (2007). Microplasma synthesis of metal nanoparticles for gas-phase studies of catalyzed carbon nanotube growth. Applied Physics Letters, 91 (12), 121503. doi: 10.1063/1.2786835
  11. Chiang, W.-H., Sankaran, R. M. (2008). Synergistic Effects in Bimetallic Nanoparticles for Low Temperature Carbon Nanotube Growth. Advanced Materials, 20 (24), 4857–4861. doi: 10.1002/adma.200801006
  12. Sato, S., Mori, K., Ariyada, O., Atsushi, H., Yonezawa, T. (2011). Synthesis of nanoparticles of silver and platinum by microwave-induced plasma in liquid. Surface and Coatings Technology, 206 (5), 955–958. doi: 10.1016/j.surfcoat.2011.03.110
  13. Pivovarov, A. A., Kravchenko, A. V., Tishchenko, A. P., Nikolenko, N. V., Sergeeva, O. V., Vorob’eva, M. I., Treshchuk, S. V. (2015). Contact nonequilibrium plasma as a tool for treatment of water and aqueous solutions: Theory and practice. Russian Journal of General Chemistry, 85 (5), 1339–1350. doi: 10.1134/s1070363215050497
  14. Frolova, L., Pivovarov, A., Tsepich, E. (2016). Non-equilibrium Plasma-Assisted Hydrophase Ferritization in Fе2+–Ni2+–SO4 2−–OH− System. Nanophysics, Nanophotonics, Surface Studies, and Applications, 213–220. doi: 10.1007/978-3-319-30737-4_18
  15. Vorobiova, M. I., Pivovarov, O. A., Vorobiova, V. I., Frolova, L. A. (2014). Synthesis of gold nanoparticles from aqueous solutions of chloroauric acid with plasma-chemical method. Eastern-European Journal of Enterprise Technologies, 4 (5 (70)), 39–44. doi: 10.15587/1729-4061.2014.26262
  16. Sergeeva, O. V., Pivovarov, A. A. (2015). Poluchenie nanorazmernyh chastits serebra v vodnom rastvore pod deystviem kontaktnoy neravnovesnoy nizkotemperaturnoy plazmy. Visnyk NTU «KhPI», 22 (1131), 10–13.
  17. Ershov, B. G., Janata, E., Henglein, A., Fojtik, A. (1993). Silver atoms and clusters in aqueous solution: absorption spectra and the particle growth in the absence of stabilizing Ag+ ions. The Journal of Physical Chemistry, 97 (18), 4589–4594. doi: 10.1021/j100120a006
  18. Baetzold, R. C. (2015). Silver–Water Clusters: A Theoretical Description of Agn(H2O)m for n=1–4; m=1–4. The Journal of Physical Chemistry C, 119 (15), 8299–8309. doi: 10.1021/jp512556g
  19. Treguer, M., Rocco, F., Lelong, G., Le Nestour, A., Cardinal, T., Maali, A., Lounis, B. (2005). Fluorescent silver oligomeric clusters and colloidal particles. Solid State Sciences, 7 (7), 812–818. doi: 10.1016/j.solidstatesciences.2005.01.017
  20. Abdel-Halim, E. S., Al-Deyab, S. S. (2011). Utilization of hydroxypropyl cellulose for green and efficient synthesis of silver nanoparticles. Carbohydrate Polymers, 86 (4), 1615–1622. doi: 10.1016/j.carbpol.2011.06.072
  21. Bogle, K. A., Dhole, S. D., Bhoraskar, V. N. (2006). Silver nanoparticles: synthesis and size control by electron irradiation. Nanotechnology, 17 (13), 3204–3208. doi: 10.1088/0957-4484/17/13/021
  22. Qin, Y., Ji, X., Jing, J., Liu, H., Wu, H., Yang, W. (2010). Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 372 (1-3), 172–176. doi: 10.1016/j.colsurfa.2010.10.013
  23. Theivasanthi, T., Alagar, M. (2012). Electrolytic Synthesis and Characterization of Silver Nanopowder. Nano Biomedicine and Engineering, 4 (2). doi: 10.5101/nbe.v4i2.p58-65
  24. Mohan, Y. M., Raju, K. M., Sambasivudu, K., Singh, S., Sreedhar, B. (2007). Preparation of acacia-stabilized silver nanoparticles: A green approach. Journal of Applied Polymer Science, 106 (5), 3375–3381. doi: 10.1002/app.26979

Downloads

Published

2017-12-25

How to Cite

Skiba, M., Pivovarov, A., Makarova, A., Pasenko, O., Khlopytskyi, A., & Vorobyova, V. (2017). Plasma-chemical formation of silver nanodispersion in water solutions. Eastern-European Journal of Enterprise Technologies, 6(6 (90), 59–65. https://doi.org/10.15587/1729-4061.2017.118914

Issue

Section

Technology organic and inorganic substances