Investigation of the effect of characteristics of gas­containing suspensions on the parameters of the process of ultrasonic wave propagation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.118943

Keywords:

gas bubbles, ore enrichment, volumetric ultrasound waves, particle distribution, characteristics of pulp

Abstract

In the course of present study, we have investigated patterns of connection between fluctuations in the number and size of particles, suspended in a fluid, and characteristics of the field of volumetric ultrasonic waves.

The presence of particles of the solid phase and gas bubbles introduces certain features to the process of attenuation and scattering of ultrasonic wave energy. The scattering of waves on the solid phase particles becomes considerable when the wavelength is commensurate with the size of the particles themselves.

In order to characterize the absorption and scattering of acoustic oscillations by oscillating gas bubbles, we applied the concepts of effective cross-sections of damping, absorption and scattering. The dependence is presented of the magnitude of cross-section of ultrasound damping by air bubbles on frequency of the sound wave.

It was established that the magnitude of attenuation of volumetric ultrasonic oscillations of high frequency (≥5 MHz) in an actual pulp depends almost only on the concentration of the solid phase and particle size of the crushed material.

The frequency of volumetric ultrasonic waves, at which the components of their absorption and scattering by particles of the solid phase in suspension are equal, characterizes the average particle size. A given frequency does not depend on the particle concentration and can be applied to estimate their mean size

Author Biographies

Vladimir Morkun, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

Doctor of Technical Sciences, Professor, Vice-Rector for Research

Natalia Morkun, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

Doctor of Technical Sciences, Associate Professor, Head of Department

Department of automation, computer science and technology

Vitaliy Tron, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Associate Professor

Department of automation, computer science and technology

Svitlana Hryshchenko, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Head of Section

Section of scientific and technical information

References

  1. Rzhevskiy, V. V., Yamshchikov, V. S. (1968). Ul'trazvukovoy kontrol' i issledovaniya v gornom dele. Moscow: Nedra, 120.
  2. Morkun, V., Tron, V. (2014). Automation of iron ore raw materials beneficiation with the operational recognition of its varieties in process streams. Metallurgical and Mining Industry, 6, 4–7.
  3. Morkun, V., Morkun, N., Tron, V. (2015). Identification of control systems for ore-processing industry aggregates based on nonparametric kernel estimators. Metallurgical and Mining Industry, 1, 14–17.
  4. Golik, V., Komashchenko, V., Morkun, V., Burdzieva, O. (2015). Metal deposits combined development experience. Metallurgical and Mining Industry, 6, 591–594.
  5. Morkun, V., Morkun, N., Tron, V. (2015). Formalization and frequency analysis of robust control of ore beneficiation technological processes under parametric uncertainty. Metallurgical and Mining Industry, 5, 7–11.
  6. Morkun, V., Morkun, N., Tron, V. (2015). Distributed closed-loop control formation for technological line of iron ore raw materials beneficiation. Metallurgical and Mining Industry, 7, 16–19.
  7. Golik, V., Komashchenko, V., Morkun, V. (2015). Feasibility of using the mill tailings for preparation of self-hardening mixtures. Metallurgical and Mining Industry, 3, 38–41.
  8. Morkun, V., Tron, V. (2014). Ore preparation multi-criteria energy-efficient automated control with considering the ecological and economic factors. Metallurgical and Mining Industry, 5, 4–7.
  9. Cao, Q., Cheng, J., Feng, Q., Wen, S., Luo, B. (2017). Surface cleaning and oxidative effects of ultrasonication on the flotation of oxidized pyrite. Powder Technology, 311, 390–397. doi: 10.1016/j.powtec.2017.01.069
  10. Morkun, V., Morkun, N., Pikilnyak, A. (2014). Simulation of the Lamb waves propagation on the plate which contacts with gas containing iron ore pulp in Waveform Revealer toolbox. Metallurgical and Mining Industry, 5, 16–19.
  11. Golik, V., Komashchenko, V., Morkun, V. (2015). Innovative technologies of metal extraction from the ore processing mill tailings and their integrated use. Metallurgical and Mining Industry, 3, 49–52.
  12. Brazhnikov, N. I. (1965). Ul'trazvukovye metody. Leningrad; Moscow: Energiya, 248.
  13. Viktorov, I. A. (1981). Zvukovye poverhnostnye volny v tverdyh telah. Moscow: Nauka, 286.
  14. Kundu, S., Kumari, A., Pandit, D. K., Gupta, S. (2017). Love wave propagation in heterogeneous micropolar media. Mechanics Research Communications, 83, 6–11. doi: 10.1016/j.mechrescom.2017.02.003
  15. Brazhnikov, N. I., Shavykina, N. S., Gordeev, A. P., Skripalev, V. S. (1975). Ispol'zovanie voln Lemba dlya signalizatsii urovnya zhidkih sred. Pribory i sistemy upravleniya, 9, 31–32.
  16. Goncharov, S. A. (2009). Povyshenie effektivnosti obogatitel'nyh tekhnologiy putem vozdeystviya vysokoenergeticheskogo ul'trazvuka na pererabatyvaemoe syr'e. Visnyk Kryvorizkoho tekhnichnoho universytetu, 23, 236–239.
  17. Podgorodetskiy, N. S. (2007). Avtomaticheskoe upravlenie protsessom raskrytiya poleznogo komponenta pri izmel'chenii rudy. Visnyk Kryvorizkoho tekhnichnoho universytetu, 19, 120–124.
  18. Louisnard, O. (2012). A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation. Ultrasonics Sonochemistry, 19 (1), 56–65. doi: 10.1016/j.ultsonch.2011.06.007
  19. Louisnard, O. (2012). A simple model of ultrasound propagation in a cavitating liquid. Part II: Primary Bjerknes force and bubble structures. Ultrasonics Sonochemistry, 19 (1), 66–76. doi: 10.1016/j.ultsonch.2011.06.008
  20. Jamshidi, R., Brenner, G. (2013). Dissipation of ultrasonic wave propagation in bubbly liquids considering the effect of compressibility to the first order of acoustical Mach number. Ultrasonics, 53 (4), 842–848. doi: 10.1016/j.ultras.2012.12.004
  21. Zhang, Y., Du, X. (2015). Influences of non-uniform pressure field outside bubbles on the propagation of acoustic waves in dilute bubbly liquids. Ultrasonics Sonochemistry, 26, 119–127. doi: 10.1016/j.ultsonch.2015.02.016
  22. Tejedor Sastre, M. T., Vanhille, C. (2017). A numerical model for the study of the difference frequency generated from nonlinear mixing of standing ultrasonic waves in bubbly liquids. Ultrasonics Sonochemistry, 34, 881–888. doi: 10.1016/j.ultsonch.2016.07.020
  23. Vanhille, C., Campos-Pozuelo, C. (2009). Nonlinear ultrasonic waves in bubbly liquids with nonhomogeneous bubble distribution: Numerical experiments. Ultrasonics Sonochemistry, 16 (5), 669–685. doi: 10.1016/j.ultsonch.2008.11.013
  24. Merouani, S., Ferkous, H., Hamdaoui, O., Rezgui, Y., Guemini, M. (2015). A method for predicting the number of active bubbles in sonochemical reactors. Ultrasonics Sonochemistry, 22, 51–58. doi: 10.1016/j.ultsonch.2014.07.015
  25. Vanhille, C., Campos-Pozuelo, C. (2014). Numerical simulations of the primary Bjerknes force experienced by bubbles in a standing ultrasonic field: Nonlinear vs. linear. Wave Motion, 51 (7), 1127–1137. doi: 10.1016/j.wavemoti.2014.06.001
  26. Xu, Z., Yasuda, K., Koda, S. (2013). Numerical simulation of liquid velocity distribution in a sonochemical reactor. Ultrasonics Sonochemistry, 20 (1), 452–459. doi: 10.1016/j.ultsonch.2012.04.011
  27. Tudela, I., Sáez, V., Esclapez, M. D., Díez-García, M. I., Bonete, P., González-García, J. (2014). Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: A review. Ultrasonics Sonochemistry, 21 (3), 909–919. doi: 10.1016/j.ultsonch.2013.11.012
  28. Vanhille, C., Campos-Pozuelo, C., Sinha, D. N. (2014). Nonlinear frequency mixing in a resonant cavity: Numerical simulations in a bubbly liquid. Ultrasonics, 54 (8), 2051–2054. doi: 10.1016/j.ultras.2014.07.004
  29. Xu, Y., Guan, Z., Jin, Y., Tian, Y., Liu, Y., Xu, C., Shi, Y. (2017). Study of the ultrasonic propagation law in the gas–liquid two-phase flow of deepwater riser through numerical simulation. Journal of Petroleum Science and Engineering, 159, 419–432. doi: 10.1016/j.petrol.2017.09.051
  30. Gubaidullin, D. A., Fedorov, Y. V. (2013). Sound waves in two-fraction polydispersed bubbly media. Journal of Applied Mathematics and Mechanics, 77 (5), 532–540. doi: 10.1016/j.jappmathmech.2013.12.008

Downloads

Published

2017-12-25

How to Cite

Morkun, V., Morkun, N., Tron, V., & Hryshchenko, S. (2017). Investigation of the effect of characteristics of gas­containing suspensions on the parameters of the process of ultrasonic wave propagation. Eastern-European Journal of Enterprise Technologies, 6(5 (90), 49–58. https://doi.org/10.15587/1729-4061.2017.118943

Issue

Section

Applied physics