Development of the technique for restricting the propagation of fire in natural peat ecosystems

Authors

  • Konstantin Migalenko Cherkasy Institute of Fire Safety named after Chornobyl Heroes National University of Civil Protection of Ukraine Onoprienko str., 8, Cherkasy, Ukraine, 18034, Ukraine https://orcid.org/0000-0002-7125-8442
  • Vitaliy Nuianzin Cherkasy Institute of Fire Safety named after Chornobyl Heroes National University of Civil Protection of Ukraine Onoprienko str., 8, Cherkasy, Ukraine, 18034, Ukraine https://orcid.org/0000-0003-4785-0814
  • Aleksandr Zemlianskyi Cherkasy Institute of Fire Safety named after Chornobyl Heroes National University of Civil Protection of Ukraine Onoprienko str., 8, Cherkasy, Ukraine, 18034, Ukraine https://orcid.org/0000-0002-1305-0387
  • Andrii Dominik Lviv State University of Life Safety Kleparivska str., 35, Lviv, Ukraine, 79007, Ukraine https://orcid.org/0000-0003-0139-2002
  • Serhii Pozdieiev Cherkasy Institute of Fire Safety named after Chornobyl Heroes National University of Civil Protection of Ukraine Onoprienko str., 8, Cherkasy, Ukraine, 18034, Ukraine https://orcid.org/0000-0002-9085-0513

DOI:

https://doi.org/10.15587/1729-4061.2018.121727

Keywords:

temperature of peat layer, mineral fire barrier, fire safety of peat

Abstract

In order to reduce the scale of peat fires, we suggest using fire barriers made of mineralized materials. The incombustible materials are proposed, specifically sand and bentonite clay, to be used for filling up artificial slits cut in a peat layer. Construction of anti-fire barriers requires a one-time expenditure, in contrast to the existing techniques for fire prevention that require continuous pumping of water in order to increase moisture content in peat.

Mathematical modeling of thermal processes in the system peat layer–fire barrier was performed. The time of reaching the dangerous temperature by the protected layer, for the barriers made of river sand with a thickness of 300 mm, and for those made of bentonite clay with a thickness of 180 mm, is not less than 1 day. Given this, we have proven the effectiveness of the proposed barriers.

By using mathematical modeling of the processes of fire development, a parabolic dependence was built of the thickness of fire protection barrier b, mm, on time τ, hours, required to protect an object. We established parameters for regression dependences of thickness of a barrier on the time required to protect a peat layer.

The result of present research is the proposed technique for designing fire protection barriers made of river sand and bentonite clay, based on the obtained patterns and regression dependences.

Research results could be used in the process of designing fire protection barriers for actual peatlands

Author Biographies

Konstantin Migalenko, Cherkasy Institute of Fire Safety named after Chornobyl Heroes National University of Civil Protection of Ukraine Onoprienko str., 8, Cherkasy, Ukraine, 18034

PhD, Associate Professor

Department of automatic safety systems and electrical installations

Vitaliy Nuianzin, Cherkasy Institute of Fire Safety named after Chornobyl Heroes National University of Civil Protection of Ukraine Onoprienko str., 8, Cherkasy, Ukraine, 18034

PhD, Head of Department

Research laboratory of innovations in the field of civil safety

Aleksandr Zemlianskyi, Cherkasy Institute of Fire Safety named after Chornobyl Heroes National University of Civil Protection of Ukraine Onoprienko str., 8, Cherkasy, Ukraine, 18034

PhD

Andrii Dominik, Lviv State University of Life Safety Kleparivska str., 35, Lviv, Ukraine, 79007

PhD, Associate Professor

Department of operation of vehicles and fire and rescue equipment

Serhii Pozdieiev, Cherkasy Institute of Fire Safety named after Chornobyl Heroes National University of Civil Protection of Ukraine Onoprienko str., 8, Cherkasy, Ukraine, 18034

Doctor of Technical Sciences, Professor, Chief Researcher

References

  1. Analiz masyvu kartok obliku pozhezh (POG_STAT) za 12 misiatsiv 2016 roku. Available at: http://undicz.dsns.gov.ua/files/2017/2/2/AD_12_2016.pdf
  2. Hayasaka, H., Noguchi, I., Putra, E. I., Yulianti, N., Vadrevu, K. (2014). Peat-fire-related air pollution in Central Kalimantan, Indonesia. Environmental Pollution, 195, 257–266. doi: 10.1016/j.envpol.2014.06.031
  3. Davies, G. M., Gray, A., Rein, G., Legg, C. J. (2013). Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland. Forest Ecology and Management, 308, 169–177. doi: 10.1016/j.foreco.2013.07.051
  4. Blake, D., Hinwood, A. L., Horwitz, P. (2009). Peat fires and air quality: Volatile organic compounds and particulates. Chemosphere, 76 (3), 419–423. doi: 10.1016/j.chemosphere.2009.03.047
  5. Prat-Guitart, N., Rein, G., Hadden, R. M., Belcher, C. M., Yearsley, J. M. (2016). Effects of spatial heterogeneity in moisture content on the horizontal spread of peat fires. Science of The Total Environment, 572, 1422–1430. doi: 10.1016/j.scitotenv.2016.02.145
  6. Ramadhan, M. L., Palamba, P., Imran, F. A., Kosasih, E. A., Nugroho, Y. S. (2017). Experimental study of the effect of water spray on the spread of smoldering in Indonesian peat fires. Fire Safety Journal, 91, 671–679. doi: 10.1016/j.firesaf.2017.04.012
  7. Rakowska, J., Prochaska, K., Twardochleb, B., Rojewska, M., Porycka, B., Jaszkiewicz, A. (2014). Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires. Chemical Papers. 2014. Vol. 68, Issue 6. P. 823–833. doi: 10.2478/s11696-013-0511-9
  8. Myhalenko, K. I., Lenartovych, Ye. S., Semerak, M. M., Myhalenko, O. I. (2000). Poshyrennia pidzemnoi pozhezhi na torfianykakh r. Tiasmyn. Pozhezhna bezpeka, 17, 138–142.
  9. Tihonov, A. N., Samarskiy, A. A. (1977). Uravneniya matematicheskoy fiziki. Moscow: Nauka, 735.
  10. Samarskiy, A. A. (1971). Vvedenie v teoriyu raznostnyh skhem. Moscow: Nauka, 554.
  11. Samarskiy, A. A., Vabishchevich, P. N. (2003). Vychislitel'naya teploperedacha. Moscow: Editorial URSS, 784.
  12. Vlasova, E. A., Zarubin, V. S., Kuvyrkin, G. N.; Zarubin, V. S., Krishchenko, A. P. (Eds.) (2001). Priblizhennye metody matematicheskoy fiziki. Moscow: MGTU im. Baumana, 700.
  13. Gurvich, L. V., Veyts, I. V., Medvedev, V. A. et. al. (1978). Termodinamicheskie svoystva individual'nyh veshchestv. Spravochnoe izdanie. Vol. 1. Kn. 2. Moscow: Nauka, 328.
  14. Ibrahim, A. M., Mubarak, H. M. (2009). Finite Element Modeling of Continuous Reinforced Concrete Beam with External Pre-stressed. European Journal of Scientific Research, 30 (1), 177–186.
  15. Demidov, P. G., Shandyba, V. A., Shcheglov, P. P. (1981). Gorenie i svoystva goryuchih veshchestv. Moscow: Himiya, 272.
  16. Drits, V. A., Kossovskaya, A. G. (1990). Glinistye mineraly: smektity, smeshanosloynye obrazovaniya. Moscow: Nauka, 214.
  17. ANSYS, ANSYS 9.0 Manual Set, ANSYS Inc., Southpoint, 275 Technology Drive, Canonsburg, PA 15317, USA.
  18. Golovanov, A. N., Yakimov, A. S., Abramovskih, A. A., Sukov, Ya. V. (2008). O matematicheskom modelirovanii protsessov zazhiganiya i tleniya torfa. Teplofizika i aeromekhanika, 15 (4), 1–9.
  19. Saharov, A. S., Kislookiy, V. M., Kirichevskiy, V. V. et. al.; Saharov, A. S., Al'tenbah, I. A. (Eds.) (1982). Metod konechnyh elementov v mekhanike tverdyh tel. Moscow: Nauka, 480.

Downloads

Published

2018-01-26

How to Cite

Migalenko, K., Nuianzin, V., Zemlianskyi, A., Dominik, A., & Pozdieiev, S. (2018). Development of the technique for restricting the propagation of fire in natural peat ecosystems. Eastern-European Journal of Enterprise Technologies, 1(10 (91), 31–37. https://doi.org/10.15587/1729-4061.2018.121727