Effect of electrolysis regimes on the structure and properties of coatings on aluminum alloys formed by anode­cathode micro arc oxidation

Authors

  • Valery Belozerov National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-7623-3658
  • Oleg Sоbоl National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-4497-4419
  • Anna Mahatilova National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0001-7146-7087
  • Valeria Subbotinа National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-3882-0368
  • Taha A. Tabaza Al-Zaytoonah University Queen Alia Airport str., 594, Amman, Jordan, 11733, Jordan
  • Ubeidulla F. Al-Qawabeha Tafila Technical University P O Box, 179, Tafila, Jordan, 66110, Jordan
  • Safwan M. Al-Qawabah Al-Zaytoonah University Queen Alia Airport str., 594, Amman, Jordan, 11733, Jordan

DOI:

https://doi.org/10.15587/1729-4061.2018.121744

Keywords:

structural engineering, anode-cathode regime, coating thickness, phase composition, corundum, properties

Abstract

The study provides research findings on the effect of current regimes in microplasma oxidation on the phase composition and the properties of oxide coatings on an aluminum alloy. To obtain oxide coatings, micro arc (microplasma) oxidation is carried out in an alkaline-silicate electrolyte with an alternating sinusoidal current and in a pulsed current mode. It has been shown that an increased density of microdischarges in the case of the pulse technology increases the total energy released in them. This produces an increase in the growth rate of the oxide coating and the probability of formation of the α-Al2O3 phase. A linear dependence of the thickness of the coating on the duration of the process time and, accordingly, on the amount of transmitted electricity has been established. It has been found that for a small thickness of the oxide layer, the high rate of heat transfer both to the metal and to the electrolyte promotes the formation of aluminum oxide in the form of the γ-Al2O3 phase. The energy concentration in a thick oxide layer causes the formation of a high-temperature modification of α-Al2O3. It has been shown that the mechanism for the formation of α-Al2O3 is determined by the action of two facts: the difference in the energies of the γ-Al2O3 and α-Al2O3 phases as well as the polymorphic high-temperature transformation of γ-Al2O3→α-Al2O3 in the high-temperature region of a micro arc discharge.

The coatings obtained by microplasma oxidation in the pulsed current mode have high hardness (23 GPa) and electrical strength (20 V/μm)

Author Biographies

Valery Belozerov, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Professor

Department of Materials Science

Oleg Sоbоl, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Physics and Mathematics Sciences, Professor

Department of Materials Science

Anna Mahatilova, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Senior Researcher

Department of Materials Science

Valeria Subbotinа, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Materials Science

Taha A. Tabaza, Al-Zaytoonah University Queen Alia Airport str., 594, Amman, Jordan, 11733

PhD, Associate Professor

Department of Mechanical Engineering

Ubeidulla F. Al-Qawabeha, Tafila Technical University P O Box, 179, Tafila, Jordan, 66110

PhD, Associate Professor

Department of Mechanical Engineering

Safwan M. Al-Qawabah, Al-Zaytoonah University Queen Alia Airport str., 594, Amman, Jordan, 11733

PhD, Associate Professor

Department of Mechanical Engineering

References

  1. Luo, W., Chen, X., Xia, Y., Chen, M., Wang, L., Wang, Q. et. al. (2017). Surface and Interface Engineering of Silicon-Based Anode Materials for Lithium-Ion Batteries. Advanced Energy Materials, 7 (24), 1701083. doi: 10.1002/aenm.201701083
  2. Kumar, P., Patnaik, A., Chaudhary, S. (2017). A review on application of structural adhesives in concrete and steel–concrete composite and factors influencing the performance of composite connections. International Journal of Adhesion and Adhesives, 77, 1–14. doi: 10.1016/j.ijadhadh.2017.03.009
  3. Cavaleiro, A., De Hosson, J. T. M. (Eds.) (2006). Nanostructured coatings. Springer, 648. doi: 10.1007/0-387-48756-5
  4. Mayrhofer, P. H., Mitterer, C., Hultman, L., Clemens, H. (2006). Microstructural design of hard coatings. Progress in Materials Science, 51 (8), 1032–1114. doi: 10.1016/j.pmatsci.2006.02.002
  5. Glushchenko, M. A., Belozyorov, V. V., Sobol, O. V., Subbotina, V. V., Zelenskaya, G. I. (2017). Effect of Tantalum on the Texture of Copper Vacuum Condensates. Journal of Nano- and Electronic Physics, 9 (2), 02015-1–02015-5. doi: 10.21272/jnep.9(2).02015
  6. Pogrebnjak, A. D., Bondar, O. V., Abadias, G., Ivashchenko, V., Sobol, O. V., Jurga, S., Coy, E. (2016). Structural and mechanical properties of NbN and Nb-Si-N films: Experiment and molecular dynamics simulations. Ceramics International, 42 (10), 11743–11756. doi: 10.1016/j.ceramint.2016.04.095
  7. Sobol’, O. V., Andreev, A. A., Grigoriev, S. N., Volosova, M. A., Gorban’, V. F. (2012). Vacuum-arc multilayer nanostructured TiN/Ti coatings: structure, stress state, properties. Metal Science and Heat Treatment, 54 (1-2), 28–33. doi: 10.1007/s11041-012-9451-1
  8. Sobol’, O. V., Meylekhov, A. A., Stolbovoy, V. A., Postelnyk, A. A. (2016). Structural Engineering Multiperiod Coating ZrN/MoN. Journal of Nano- and Electronic Physics, 8 (3), 03039-1–03039-4. doi: 10.21272/jnep.8(3).03039
  9. Grigoriev, S. N., Sobol, O. V., Beresnev, V. M., Serdyuk, I. V., Pogrebnyak, A. D., Kolesnikov, D. A., Nemchenko, U. S. (2014). Tribological characteristics of (TiZrHfVNbTa)N coatings applied using the vacuum arc deposition method. Journal of Friction and Wear, 35 (5), 359–364. doi: 10.3103/s1068366614050067
  10. Bourebia, M., Laouar, L., Hamadache, H., Dominiak, S. (2016). Improvement of surface finish by ball burnishing: approach by fractal dimension. Surface Engineering, 33 (4), 255–262. doi: 10.1080/02670844.2016.1232778
  11. Zin, V., Miorin, E., Deambrosis, S. M., Montagner, F., Fabrizio, M. (2018). Mechanical properties and tribological behaviour of Mo-N coatings deposited via high power impulse magnetron sputtering on temperature sensitive substrates. Tribology International, 119, 372–380. doi: 10.1016/j.triboint.2017.11.007
  12. Mankari, K., Acharyya, S. G. (2017). Development of stress corrosion cracking resistant welds of 321 stainless steel by simple surface engineering. Applied Surface Science, 426, 944–950. doi: 10.1016/j.apsusc.2017.07.223
  13. Sobol’, O. V. (2016). The influence of nonstoichiometry on elastic characteristics of metastable β-WC1–x phase in ion plasma condensates. Technical Physics Letters, 42 (9), 909–911. doi: 10.1134/s1063785016090108
  14. Ivashchenko, V. I., Dub, S. N., Scrynskii, P. L., Pogrebnjak, A. D., Sobol’, O. V., Tolmacheva, G. N. et. al. (2016). Nb–Al–N thin films: Structural transition from nanocrystalline solid solution nc-(Nb,Al)N into nanocomposite nc-(Nb, Al)N/a–AlN. Journal of Superhard Materials, 38 (2), 103–113. doi: 10.3103/s1063457616020040
  15. Kuzin, V. V., Fedorov, M. Y., Volosova, M. A. (2017). Transformation of the Stressed State of a Surface Layer of Nitride Ceramic with a Change in TiC-Coating Thickness. Loading Version – Combined Loading. Refractories and Industrial Ceramics, 58 (2), 220–226. doi: 10.1007/s11148-017-0084-1
  16. Barmin, A. E., Sobol’, O. V., Zubkov, A. I., Mal’tseva, L. A. (2015). Modifying effect of tungsten on vacuum condensates of iron. The Physics of Metals and Metallography, 116 (7), 706–710. doi: 10.1134/s0031918x15070017
  17. Barmin, A. E., Zubkov, A. I., Il'inskii, A. I. (2012). Structural features of the vacuum condensates of iron alloyed with tungsten. Functional Materials, 19 (2), 256–259.
  18. Teppernegg, T., Czettl, C., Michotte, C., Mitterer, C. (2018). Arc evaporated Ti-Al-N/Cr-Al-N multilayer coating systems for cutting applications. International Journal of Refractory Metals and Hard Materials, 72, 83–88. doi: 10.1016/j.ijrmhm.2017.12.014
  19. Quazi, M. M., Ishak, M., Arslan, A., Nasir Bashir, M., Ali, I. (2017). Scratch adhesion and wear failure characteristics of PVD multilayer CrTi/CrTiN thin film ceramic coating deposited on AA7075-T6 aerospace alloy. Journal of Adhesion Science and Technology, 32 (6), 625–641. doi: 10.1080/01694243.2017.1373988
  20. Sobol’, O. V. (2016). Structural Engineering Vacuum-plasma Coatings Interstitial Phases. Journal of Nano- and Electronic Physics, 8 (2), 02024–1–02024–7. doi: 10.21272/jnep.8(2).02024
  21. Yerokhin, A. L., Nie, X., Leyland, A., Matthews, A., Dowey, S. J. (1999). Plasma electrolysis for surface engineering. Surface and Coatings Technology, 122 (2-3), 73–93. doi: 10.1016/s0257-8972(99)00441-7
  22. Wang, S., Xie, F., Wu, X. (2017). Mechanism of Al2O3 coating by cathodic plasma electrolytic deposition on TiAl alloy in Al(NO 3)3 ethanol-water electrolytes. Materials Chemistry and Physics, 202, 114–119. doi: 10.1016/j.matchemphys.2017.09.006
  23. Yang, Y., Gu, Y., Zhang, L., Jiao, X., Che, J. (2017). Influence of MAO Treatment on the Galvanic Corrosion Between Aluminum Alloy and 316L Steel. Journal of Materials Engineering and Performance, 26 (12), 6099–6106. doi: 10.1007/s11665-017-3037-4
  24. Curran, J. A., Clyne, T. W. (2005). Thermo-physical properties of plasma electrolytic oxide coatings on aluminium. Surface and Coatings Technology, 199 (2-3), 168–176. doi: 10.1016/j.surfcoat.2004.09.037
  25. Belozerov, V., Mahatilova, A., Sobol’, O., Subbotinа, V., Subbotin, A. (2017). Investigation of the influence of technological conditions of microarc oxidation of magnesium alloys on their structural state and mechanical properties. Eastern-European Journal of Enterprise Technologies, 2 (5 (86)), 39–43. doi: 10.15587/1729-4061.2017.96721
  26. Bala Srinivasan, P., Liang, J., Blawert, C., Störmer, M., Dietzel, W. (2009). Effect of current density on the microstructure and corrosion behaviour of plasma electrolytic oxidation treated AM50 magnesium alloy. Applied Surface Science, 255 (7), 4212–4218. doi: 10.1016/j.apsusc.2008.11.008
  27. Tran, Q.-P., Kuo, Y.-C., Sun, J.-K., He, J.-L., Chin, T.-S. (2016). High quality oxide-layers on Al-alloy by micro-arc oxidation using hybrid voltages. Surface and Coatings Technology, 303, 61–67. doi: 10.1016/j.surfcoat.2016.03.049
  28. Hussein, R. O., Northwood, D. O., Nie, X. (2013). The effect of processing parameters and substrate composition on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloys. Surface and Coatings Technology, 237, 357–368. doi: 10.1016/j.surfcoat.2013.09.021
  29. Dejun, K., Jing, Z., Hao, L. (2017). Friction-wear behaviours of micro-arc oxidation films in situ grown on 7475 aluminium alloys. Materials Technology, 32 (12), 737–743. doi: 10.1080/10667857.2017.1350918
  30. Zhuang, J.-J., Zhang, X.-Y., Sun, B., Song, R.-G., Li, H. (2017). Microarc oxidation coatings and corrosion behavior of 7050 aluminum alloy. Chinese Journal of Engineering, 39 (10, 1532–1539.
  31. Liu, Z., Zhu, X., Cheng, D., Ma, C., Yan, Z., Xu, X. (2017). Properties of micro-arc oxidation ceramic coating on ZL109 aluminum alloy surface under high pulsed energy. Heat Treatment of Metals, 42 (6), 28–32.
  32. Martin, J., Melhem, A., Shchedrina, I., Duchanoy, T., Nominé, A., Henrion, G. et. al. (2013). Effects of electrical parameters on plasma electrolytic oxidation of aluminium. Surface and Coatings Technology, 221, 70–76. doi: 10.1016/j.surfcoat.2013.01.029
  33. Chen, C.-M., Chu, H.-J., He, J.-L. (2017). Anodic dyeing of micro-arc oxidized aluminum with a cathodic pretreatment. Surface and Coatings Technology, 324, 92–98. doi: 10.1016/j.surfcoat.2017.05.062
  34. Belozerov, V., Sоbоl, O., Mahatilova, A., Subbotinа, V., Tabaza, T. A., Al-Qawabeha, U. F., Al-Qawabah, S. M. (2017). The influence of the conditions of microplasma processing (microarc oxidation in anode­cathode regime) of aluminum alloys on their phase composition. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 52–57. doi: 10.15587/1729-4061.2017.112065
  35. Veys-Renaux, D., Chahboun, N., Rocca, E. (2016). Anodizing of multiphase aluminium alloys in sulfuric acid: in-situ electrochemical behaviour and oxide properties. Electrochimica Acta, 211, 1056–1065. doi: 10.1016/j.electacta.2016.06.131
  36. Wang, P., Wu, T., Xiao, Y. T., Zhang, L., Pu, J., Cao, W. J., Zhong, X. M. (2017). Characterization of micro-arc oxidation coatings on aluminum drillpipes at different current density. Vacuum, 142, 21–28. doi: 10.1016/j.vacuum.2017.04.038
  37. Lv, P. X., Chi, G. X., Wei, D. B., Di, S. C. (2011). Design of Scanning Micro-Arc Oxidation Forming Ceramic Coatings on 2024 Aluminium Alloy. Advanced Materials Research, 189-193, 1296–1300. doi: 10.4028/www.scientific.net/amr.189-193.1296
  38. Klopotov, A. A., Abzaev, Yu. A., Potekaev, A. I., Volokitin, O. G. (2012). Osnovy rentgenostrukturnogo analiza v materialovedenii. Tomsk: Izd-vo Tom. gos. arhit.-stroit. Un-ta, 276.

Downloads

Published

2018-01-26

How to Cite

Belozerov, V., Sоbоl O., Mahatilova, A., Subbotinа V., Tabaza, T. A., Al-Qawabeha, U. F., & Al-Qawabah, S. M. (2018). Effect of electrolysis regimes on the structure and properties of coatings on aluminum alloys formed by anode­cathode micro arc oxidation. Eastern-European Journal of Enterprise Technologies, 1(12 (91), 43–47. https://doi.org/10.15587/1729-4061.2018.121744

Issue

Section

Materials Science