The study of physical­chemical patterns of resource­saving recycling of tungsten­containing ore raw materials by solid­phase reduction

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.122743

Keywords:

tungsten concentrate, carbothermic reduction, metallization, sublimation, phase analysis, microstructure, resource saving

Abstract

It was determined that the oxidic tungsten concentrate is represented basically by CaWO4. Other phases have a fragmentary manifestation with a low intensity of the corresponding diffraction peaks. Microstructure is heterogeneous, disordered. Particles with presence of the accompanying ore impurities (molybdenum, calcium, silicon, iron, aluminum, fluorine and carbon) were found. The metallized tungsten concentrate after heat treatment at 1,250 K had a reduction degree of 21 % with a prevalence of CaWO4 in the phase composition. An increase in temperature to 1,350 K and 1,450 K provided a reduction degree of 69 % and 87 %, respectively. Under these conditions, a significant predominance of WC and W2C carbides was found in the phase composition. The presence of CaWO4 was of a residual nature with a relatively low intensity of manifestation. The microstructure of metallized tungsten concentrate was inhomogeneous with the presence of particles of various sizes and chemical compositions. As the reduction temperature increased, manifestation of the processes of sintering of particles was observed, especially clearly after treatment at 1,350 K and 1,450 K

Author Biographies

Stanislav Hryhoriev, Zaporizhzhia national University Zhukovskoho str., 66, Zaporizhzhia, Ukraine, 69600

Doctor of Technical Sciences, Professor

Department of business administration and international management

Artem Petryshchev, Zaporizhzhia National Technical University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

PhD, Associate Professor

Department of Labour and Environment Protection

Olga Sergienko, Zaporizhzhia National Technical University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

PhD

Department of Foundry Technology and Equipment

Dmitry Milko, Tavria State Agrotechnological University B. Khmelnytsky ave., 18, Melitopol, Ukraine, 72310

Doctor of Technical Science, Associate Professor

Department of technical systems of livestock technologies

Alexander Stepanenko, Zaporizhzhia National Technical University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

PhD, Associate Professor

Department of Software Tools

Gennadii Kozhemiakin, Zaporizhzhia State Engineering Academy Soborny ave., 226, Zaporizhzhia, Ukraine, 69606

PhD, Associate Professor, Head of Department

Department of Applied Ecology and Labor Protection

Yevheniia Manidina, Zaporizhzhia State Engineering Academy Soborny ave., 226, Zaporizhzhia, Ukraine, 69606

PhD, Associate Professor

Department of Applied Ecology and Labor Protection

Nataliia Berenda, Zaporizhzhia State Engineering Academy Soborny ave., 226, Zaporizhzhia, Ukraine, 69606

PhD, Associate Professor

Department of Applied Ecology and Labor Protection

Vadim Ryzhkov, Zaporizhzhia State Engineering Academy Soborny ave., 226, Zaporizhzhia, Ukraine, 69606

PhD, Associate Professor

Department of Applied Ecology and Labor Protection

Oksana Shcherbyna, Zaporizhzhia National Technical University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

Assistant

Department of applied mathematics

References

  1. Tarasov, A. V. (2011). Mineral'noe syr'e, novye tekhnologii i razvitie proizvodstva tugoplavkih redkih metallov v Rossii i stranah SNG. Tsvetnye metally, 6, 57–66.
  2. Jung, W.-G. (2014). Recovery of tungsten carbide from hard material sludge by oxidation and carbothermal reduction process. Journal of Industrial and Engineering Chemistry, 20 (4), 2384–2388. doi: 10.1016/j.jiec.2013.10.017
  3. Pashkeev, K. Yu., Pashkeev, I. Yu., Mihaylov, G. G., Sudarikov, M. V., Tarasov, P. A. (2015). Issledovanie alyuminotermicheskogo vosstanovleniya vol'framitovyh kontsentratov. Vestnik Yuzhno-ural'skogo gosudarstvennogo universiteta. Seriya: Metallurgiya, 15 (2), 13–19.
  4. Leont’ev, L. I., Grigorovich, K. V., Kostina, M. V. (2016). The development of new metallurgical materials and technologies. Part 1. Steel in Translation, 46 (1), 6–15. doi: 10.3103/s096709121601006x
  5. Kozyrev, N. A., Bendre, Yu. V., Goryushkin, V. F., Shurupov, V. M., Kozyreva, O. E. (2016). Termodinamika reaktsiy vosstanovleniya WO3 uglerodom. Vestnik Sibirskogo gosudarstvennogo industrial'nogo universiteta, 2 (16), 15–17.
  6. Ryabchikov, I. V., Belov, B. F., Mizin, V. G. (2014). Reactions of metal oxides with carbon. Steel in Translation, 44 (5), 368–373. doi: 10.3103/s0967091214050118
  7. Shveikin, G. P., Kedin, N. A. (2014). Products of carbothermal reduction of tungsten oxides in argon flow. Russian Journal of Inorganic Chemistry, 59 (3), 153–158. doi: 10.1134/s0036023614030206
  8. Smirnyagina, N. N., Khaltanova, V. M., Kim, T. B., Milonov, A. S. (2012). Thermodynamic modeling of the formation of borides and carbides of tungsten, synthesis, structure and phase composition of the coatings based on them, formed by electron-beam treatment in vacuum. Izvestiya vysshih uchebnyh zavedeniy. Fizika, 55 (12 (3)), 159–163.
  9. Kuz'michev, E. N., Nikolenko, S. V., Balahonov, D. I. (2017). Poluchenie karbida vol'frama iz sheelitovogo kontsentrata kontsentrirovannymi potokami energii. Himicheskaya tekhnologiya, 3, 113–118.
  10. Bel'skiy, S. S. (2015). Pererabotka sheelitovogo kontsentrata s polucheniem trioksida vol'frama. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta, 12 (107), 204–208.
  11. Grigor'ev, D. S. (2010). Nekotorye kineticheskie zakonomernosti uglerodotermicheskogo vosstanovleniya smesi okaliny bystrorezhushchey stali s dobavkami sheelitovogo kontsentrata. Metall i lit'e Ukrainy, 9-10, 57–61.
  12. Tsivirko, E. I., Grigor'ev, D. S. (2010). Nekotorye fazovye i strukturnye prevrashcheniya pri uglerodotermicheskom vosstanovlenii smesi okaliny bystrorezhushchih staley s dobavkami sheelitovogo kontsentrata. Novi materialy i tekhnolohii v metalurhii ta mashynobuduvanni, 2, 90–94.
  13. Grigor'ev, D. S. (2011). Nekotorye fazovye i veshchestvennye prevrashcheniya pri uglerodotermicheskom vosstanovdenii sheelitovogo kontsentrata. Stal', 11, 60–63.
  14. Grigor'ev, D. S. (2010). Sovershenstvovanie metoda opredeleniya stepeni vosstanovleniya vol'framovogo kontsentrata. Novi materialy i tekhnolohiyi v metalurhiyi ta mashynobuduvanni, 2, 72–75.

Downloads

Published

2018-02-05

How to Cite

Hryhoriev, S., Petryshchev, A., Sergienko, O., Milko, D., Stepanenko, A., Kozhemiakin, G., Manidina, Y., Berenda, N., Ryzhkov, V., & Shcherbyna, O. (2018). The study of physical­chemical patterns of resource­saving recycling of tungsten­containing ore raw materials by solid­phase reduction. Eastern-European Journal of Enterprise Technologies, 1(12 (91), 4–9. https://doi.org/10.15587/1729-4061.2018.122743

Issue

Section

Materials Science