Surface hardening and finishing of metallic products by hybrid laser­ultrasonic treatment

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.124031

Keywords:

laser-ultrasonic hardening, AISI 1045 steel, thermo-kinetic model, thermo-physical model, hardness, roughness

Abstract

Theoretical and experimental study of the possibilities of using laser heat treatment (LHT) combined with ultrasonic impact treatment (UIT) for surface hardening and finishing of metallic products was carried out. The austenization temperature range (1,050...1,350 °C) at different speeds (50...150 mm/min) of LHT without surface melting by the scanning laser beam, as well as the beginning (~360 °C) and end (~245 °C) temperatures of the martensitic transformation during the specimen cooling were determined. As a result, it allows narrowing the range of optimum LHT regimes, providing the surface hardness of 800...1,000 HV and the hardening depth of 200...400 μm of the surface layer. Experimental studies have confirmed that the determined magnitude of temperature on the specimen surface of AISI 1045 steel correlates well with the heating temperature measured by the laser pyrometer. As a consequence, this provides the ability to determine the application distance of the ultrasonic tool during cooling in the laser surface hardening of metallic surfaces.

The comparative analysis of the microhardness of the surface layer and the surface roughness of the samples treated by LHT, UIT, combined and hybrid laser-ultrasonic treatment was carried out. It was found that the hybrid laser-ultrasonic treatment allowed increasing the microhardness of surface layers more than 3 times and reducing the roughness parameter Ra approximately 3 times compared to the initial state, provided favorable conditions to trap oil on the product surface. Thus, there are reasons to assert the possibility of using the hybrid LHT+UIT for surface hardening and finishing of the large-sized products that work in extreme conditions

Author Biographies

Vitaliy Dzhemelinskyi, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Professor

Depatment of Laser System and Physical Technologies

Dmytro Lesyk, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Assistant

Depatment of Laser System and Physical Technologies

Olexiy Goncharuk, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Depatment of Laser System and Physical Technologies

Oleksandr Dаnyleikо, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Postgraduate student

Depatment of Laser System and Physical Technologies

References

  1. Santhanakrishnan, S., Dahotre, N. B. (2013). Laser surface hardening.ASM Handbook Volume 4A: Steel Heat Treating Fundamentals and Processes, 476–491.
  2. Kovalenko, V., Zhuk, R. (2004). Systemized approach in laser industrial systems design. Journal of Materials Processing Technology, 149 (1-3), 553–556. doi: 10.1016/j.jmatprotec.2004.02.020
  3. Idan, A. F. І., Akimov, O., Golovko, L., Goncharuk, O., Kostyk, K. (2016). The study of the influence of laser hardening conditions on the change in properties of steels. Eastern-European Journal of Enterprise Technologies, 2 (5 (80)), 69–73.doi: 10.15587/1729-4061.2016.65455
  4. Klocke, F., Schulz, M., Gräfe, S. (2017). Optimization of the Laser Hardening Process by Adapting the Intensity Distribution to Generate a Top-hat Temperature Distribution Using Freeform Optics. Coatings, 7 (12), 77. doi: 10.3390/coatings7060077
  5. Wang, Z., Jiang, C., Gan, X., Chen, Y., Ji, V. (2011). Influence of shot peening on the fatigue life of laser hardened 17-4PH steel. International Journal of Fatigue, 33 (4), 549–556. doi: 10.1016/j.ijfatigue.2010.10.010
  6. Tsuji, N., Tanaka, S., Takasugi, T. (2009). Effects of combined plasma-carburizing and shot-peening on fatigue and wear properties of Ti–6Al–4V alloy. Surface and Coatings Technology, 203 (10-11), 1400–1405. doi: 10.1016/j.surfcoat.2008.11.013
  7. Tsuji, N., Tanaka, S., Takasugi, T. (2009). Effect of combined plasma-carburizing and deep-rolling on notch fatigue property of Ti-6Al-4V alloy. Materials Science and Engineering: A, 499 (1-2), 482–488. doi: 10.1016/j.msea.2008.09.008
  8. Mazheika, A. I., Chaikovskyi, O. B., Mukhammed, A. Sh. M., Lutai, A. M. (2006). Lazerne termodeformatsiyne zmitsnennia detalei silskohospodarskykh mashyn. Konstruiuvannia, vyrobnytstvo ta ekspluatatsiya silskohospodarskykh mashyn, 1, 140–146.
  9. Tian, Y., Shin, Y. C. (2007). Laser-assisted burnishing of metals. International Journal of Machine Tools and Manufacture, 47 (1), 14–22. doi: 10.1016/j.ijmachtools.2006.03.002
  10. Wu, B., Wang, P., Pyoun, Y.-S., Zhang, J., Murakami, R. (2012). Effect of ultrasonic nanocrystal surface modification on the fatigue behaviors of plasma-nitrided S45C steel. Surface and Coatings Technology, 213, 271–277. doi: 10.1016/j.surfcoat.2012.10.063
  11. Lesyk, D. A., Martinez, S., Dzhemelinskyy, V. V., Lamikiz, А., Mordyuk, B. N., Prokopenko, G. I. (2015). Surface microrelief and hardness of laser hardened and ultrasonically peened AISI D2 tool steel. Surface and Coatings Technology, 278, 108–120. doi: 10.1016/j.surfcoat.2015.07.049
  12. Lesyk, D. A., Martinez, S., Mordyuk, B. N., Dzhemelinskyi, V. V., Lamikiz, А., Prokopenko, G. I. et. al. (2017). Microstructure related enhancement in wear resistance of tool steel AISI D2 by applying laser heat treatment followed by ultrasonic impact treatment. Surface and Coatings Technology, 328, 344–354. doi: 10.1016/j.surfcoat.2017.08.045
  13. Lesyk, D. A., Martinez, S., Mordyuk, B. N., Dzhemelinskyi, V. V., Lamikiz, A., Prokopenko, G. I. et. al. (2017). Laser-Hardened and Ultrasonically Peened Surface Layers on Tool Steel AISI D2: Correlation of the Bearing Curves’ Parameters, Hardness and Wear. Journal of Materials Engineering and Performance, 27 (2), 764–776. doi: 10.1007/s11665-017-3107-7
  14. Brover, A. V. (2008). Strukturnoe sostoyanie poverhnostnyh sloev stali X12M posle lazerno-akusticheskoy obrabotki. Vesnik Mashinostroeniya, 11, 67–69.
  15. Gureev, D. M. (2001). Laser-ultrasonic hardening of steel surface. Adv. Cond. Matt. Mater. Research, 3 (1), 87–94.
  16. Rakhimyanov, K. M., Nikitin, Y. V., Semenova, Y. S., Eremina, A. S. (2016). Residual Stress, Structure and Other Properties Formation by Combined Thermo-Hardening Processing of Surface Layer of Gray Cast Iron Parts. IOP Conference Series: Materials Science and Engineering, 126, 012019. doi: 10.1088/1757-899x/126/1/012019
  17. Martínez, S., Lamikiz, A., Ukar, E., Tabernero, I., Arrizubieta, I. (2016). Control loop tuning by thermal simulation applied to the laser transformation hardening with scanning optics process. Applied Thermal Engineering, 98, 49–60. doi: 10.1016/j.applthermaleng.2015.12.037
  18. Martínez, S., Lesyk, D., Lamikiz, A., Ukar, E., Dzhemelinsky, V. (2016). Hardness Simulation of over-tempered Area During Laser Hardening Treatment. Physics Procedia, 83, 1357–1366. doi: 10.1016/j.phpro.2016.08.143
  19. Holovko, L. F., Lukianenko, S. O. (2009). Lazerni tekhnolohiyi ta kompiuterne modeliuvannia. Kyiv: Vistka, 296.
  20. Mordyuk, B. N., Prokopenko, G. I. (2007). Ultrasonic impact peening for the surface properties’ management. Journal of Sound and Vibration, 308 (3-5), 855–866. doi: 10.1016/j.jsv.2007.03.054
  21. Mordyuk, B. N., Prokopenko, G. I. (2006). Fatigue life improvement of α-titanium by novel ultrasonically assisted technique. Materials Science and Engineering: A, 437 (2), 396–405. doi: 10.1016/j.msea.2006.07.119
  22. Santhanakrishnan, S., Kong, F., Kovacevic, R. (2012). An experimentally based thermo-kinetic phase transformation model for multi-pass laser heat treatment by using high power direct diode laser. The International Journal of Advanced Manufacturing Technology, 64 (1-4), 219–238. doi: 10.1007/s00170-012-4029-z
  23. Orazi, L., Fortunato, A., Cuccolini, G., Tani, G. (2010). An efficient model for laser surface hardening of hypo-eutectoid steels. Applied Surface Science, 256 (6), 1913–1919. doi: 10.1016/j.apsusc.2009.10.037
  24. Jerniti, A. G., Ouafi, A. E., Barka, N. (2016). Single Track Laser Surface Hardening Model for AISI 4340 Steel Using the Finite Element Method. Modeling and Numerical Simulation of Material Science, 06 (02), 17–27. doi: 10.4236/mnsms.2016.62003
  25. Kyryliv, O. V., Nykyforchyn, H. M., Kurzydlowski, K. J. (2008). Evaluation of heat release in the process of pulsed mechanical hardening of titanium alloys. Materials Science, 44 (3), 418–422. doi: 10.1007/s11003-008-9099-6

Downloads

Published

2018-02-22

How to Cite

Dzhemelinskyi, V., Lesyk, D., Goncharuk, O., & Dаnyleikо O. (2018). Surface hardening and finishing of metallic products by hybrid laser­ultrasonic treatment. Eastern-European Journal of Enterprise Technologies, 1(12 (91), 35–42. https://doi.org/10.15587/1729-4061.2018.124031

Issue

Section

Materials Science