Investigation of the combination of ITO/CdS/CdTe/Cu/Au solar cells in microassembly for electrical supply of field cables
DOI:
https://doi.org/10.15587/1729-4061.2018.124575Keywords:
film photocell, micromodule, electrical commutation, solar cell, cadmium telluride, current-voltage characteristicAbstract
Studies aimed at optimizing the design of micromodules based on ITO/CdS/CdTe/Cu/Au photoelectric converters, which are used in autonomous power plants for field camps, have been carried out. To use photoelectric converters as power sources, they are combined into micromodules and modules. The nature of commutation of single solar cells in the microassembly significantly affects the output characteristics of the micromodule and, consequently, the efficiency of the photoelectric converter as a whole.
It is found that the series connection of the ITO/CdS/CdTe/Cu/Au PEC in the micromodule ensures its stability even if the output parameters of one or more single solar cells fail or deteriorate. If the composition of the micromodule includes a solar cell with significantly worse output characteristics, or there are several such elements, then when they are connected in series, the efficiency of the micromodule is several times higher than for a parallel cell. With the series connection of the ITO/CdS/CdTe/Cu/Au PEC in the micromodule composition, experimental samples of the micromodule with an efficiency of 5.3 % are obtained, which is almost 2 times higher than for parallel connection of the same PECReferences
- Obuhov, S. G., Plotnikov, I. A. (2012). Sravnitel'niy analiz skhem avtonomnyh elektrostanciy, ispol'zuyushchih ustanovki vozobnovlyaemoy energetiki. Promyshlennaya Energetika, 07, 46–51.
- Kirichenko, M. V., Zaitsev, R. V., Deyneko, N. V., Kopach, V. R., Antonova, V. A., Listratenko, A. M. (2008). Influence of Constructive and Technological Solutions of Silicon Solar Cells on Minority Carrier Parameters of Base Crystals. Telecommunications and Radio Engineering, 67 (3), 227–240. doi: 10.1615/telecomradeng.v67.i3.40
- Khrypunov, G., Vambol, S., Deyneko, N., Sychikova, Y. (2016). Increasing the efficiency of film solar cells based on cadmium telluride. Eastern-European Journal of Enterprise Technologies, 6 (5 (84)), 12–18. doi: 10.15587/1729-4061.2016.85617
- Sites, J. R. (1988). Separation of voltage loss mechanisms in polycrystalline solar cells. Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference. doi: 10.1109/pvsc.1988.105983
- Bonnet, D. (1992). The CdTe thin film solar cell – an overview. International Journal of Solar Energy, 12 (1-4), 1–14. doi: 10.1080/01425919208909746
- Mitchell, K., Fahrenbruch, A. L., Bube, R. H. (1977). Photovoltaic determination of optical‐absorption coefficient in CdTe. Journal of Applied Physics, 48 (2), 829–830. doi: 10.1063/1.323636
- Chu, T. L., Chu, S. S. (1993). Recent progress in thin-film cadmium telluride solar cells. Progress in Photovoltaics: Research and Applications, 1 (1), 31–42. doi: 10.1002/pip.4670010105
- Bonnet, D., Harr, M. (1998). Manufacturing of CdTe solar cell. Proc. of 2nd World Conference on Photovoltaic Solar Energy Conversion, 397–402.
- Romeo, N., Bosio, A., Romeo, A. (2010). An innovative process suitable to produce high-efficiency CdTe/CdS thin-film modules. Solar Energy Materials and Solar Cells, 94 (1), 2–7. doi: 10.1016/j.solmat.2009.06.001
- Wu, X., Keane, J. C., Dhere, R. G., DeHart, C., Albin, D. S., Duda, A. et. al. (2001). 16.5%-Efficient CdS/CdTe polycrystalline thin-filM solar cell. 17th European Photovoltaic Solar Energy Conference. Munich, GerMany, 995–1000.
- Raushenbach, H. S. (1980). Solar Cells Array Design. New York: Litton Uducation Publishing, 250.
- Zi, S.; Suris, R. A. (Ed.) (1984). Fizika poluprovodnikovyh priborov. Moscow, 456.
- Vasil'ev, A. M., Landsman, A. P. (1971). Poluprovodnikovye fotopreobrazovateli. Moscow, 248.
- Khrypunov, G., Meriuts, А., Klyui, N., Shelest, Т., Deyneko, N., Kovtun, N. (2010). Development of back contact for CdS/Cdte thin film solar cells. Functional Materials, 17 (1), 114–117.
- Lisachuk, H. V., Kirichenko, M. V., Khrypunov, H. S., Zaitsev, R. V., Kopach, V. R. (2008). Pat. No. 33676 UA. Svitlodiodnyi osvitliuvach. MPK: G01R 31/26, H01L 21/66. published: 10.07.2008, Bul. No. 13.
- Meriuts, A. V., Khrypunov, G. S., Shelest, T. N., Deyneko, N. V. (2010). Features of the light current-voltage characteristics of bifacial solar cells based on thin CdTe layers. Semiconductors, 44 (6), 801–804. doi: 10.1134/s1063782610060187
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Natalya Deyneko, Oleg Semkiv, Igor Khmyrov, Anton Khryapynskyy
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.