Influence of the thermal factor on the composition of electron­beam high­entropy ALTiVCrNbMo coatings

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.126545

Keywords:

high-entropy alloy AlTiVCrNbMo, electron-beam coating, thermal factor, element composition, phase composition

Abstract

This paper reports results of studying the element and phase compositions of electron-beam coatings based on the high-entropy alloy AlTiVCrNbMo, depending on the deposition temperature (in the range of 300...700 °С).

The high-entropy alloys were melted in an arc furnace in an atmosphere of high-purity argon. Vacuum condensates of the high-entropy alloy (AlTiVCrNbMo) with a thickness of 3–5 µm were obtained in the vacuum setup UVN-2M-1 at a working vacuum of 5·10-5 mТоrr. The alloy evaporation was performed from the water-cooled ingot mold using an electron-beam gun with a power of 5 kW. Condensation of vapors of all the elements of the alloy was performed onto copper substrates at temperatures of 300, 500, 700 °C.

Based on analysis of the element composition of materials of the target made of the high-entropy six-element alloy AlTiVCrNbMo and electron-beam coatings, based on it, we established the critical parameter (specific heat of vaporization of an element) that defined a selective change in the element composition. In accordance with a characteristic change in the composition of coatings of the multi-element high-entropy alloy, 3 groups of elements were distinguished: with a specific heat of evaporation of 280...350 kJ/mol (group 1), 420…460 kJ/mol (group 2), and 590…680 kJ/mol (group 3). It was shown that the formation of a single-phase coating of the high-entropy alloy (based on BCC of the crystalline lattice) occurs at the higher deposition temperature of 500...700 °C when the coating consists of not less than 5 elements.

It was established that based on the conditions for an electron-beam process of materials formation, the results obtained can be divided into two types: those determined by the condition of evaporation of the target and those determined by the conditions of coating deposition. The density of flows of elements, evaporated from the target, is determined by their specific heat of evaporation. However, the ratio of atoms in the flow, derived in this way, may not be retained in the formed coating due to the secondary evaporation of elements from the growth surface. The obtained results allow us to substantiate principles for the selection of components for achieving the optimal element and phase compositions of high-entropy alloys.

Author Biographies

Oleg Sobol’, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Physics and Mathematics Sciences, Professor

Department of Materials Science

Alexander Barmin, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Materials Science

Svitlana Hryhorieva, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Engineer

Department of Materials Science

Viktor Gorban’, Frantsevich Institute for Problems of Materials Science Krzhyzhanovskoho str., 3, Kyiv, Ukraine, 03680

Doctor of Technical Sciences

Alexander Vuets, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Junior Researcher

Department of Materials Science

Alexander Subbotin, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Researcher

Department of Materials Science

References

  1. Mayrhofer, P. H., Mitterer, C., Hultman, L., Clemens, H. (2006). Microstructural design of hard coatings. Progress in Materials Science, 51 (8), 1032–1114. doi: 10.1016/j.pmatsci.2006.02.002
  2. Sobol’, O. V. (2016). Structural Engineering Vacuum-plasma Coatings Interstitial Phases. Journal of Nano- and Electronic Physics, 8 (2), 02024-1–02024-7. doi: 10.21272/jnep.8(2).02024
  3. Zubkov, A. I., Zubarev, E. N., Sobol’, O. V., Hlushchenko, M. A., Lutsenko, E. V. (2017). Structure of vacuum Cu–Ta condensates. Physics of Metals and Metallography, 118 (2), 158–163. doi: 10.1134/s0031918x17020156
  4. Sobol’, O. V., Andreev, A. A., Gorban’, V. F., Meylekhov, A. A., Postelnyk, Н. О. (2016). Structural Engineering of the Vacuum Arc ZrN/CrN Multilayer Coatings. Journal of Nano- and Electronic Physics, 8 (1), 01042–1–01042–5. doi: 10.1134/s1063784216070252
  5. Sobol’, O. V., Meylekhov, A. A., Stolbovoy, V. A., Postelnyk, A. A. (2016). Structural Engineering Multiperiod Coating ZrN/MoN. Journal of Nano- and Electronic Physics, 8 (3), 03039-1–03039-4. doi: 10.21272/jnep.8(3).03039
  6. Postelnyk, H., Knyazev, S., Meylekhov, A., Stolbovoy, V., Kovteba, D. (2017). A study of an effect of the parameters of niobium-based ion cleaning of a surface on its structure and properties. Eastern-European Journal of Enterprise Technologies, 1 (5 (85)), 34–39. doi: 10.15587/1729-4061.2017.91788
  7. Sobol, O. V., Meylekhov, A. A., Bochulia, T. V., Stolbovoy, V. A., Gorban, V. F. (2017). А Computer Simulation of Radiation-Induced Structural Changes and Properties of Multiperiod ZrNx/MoNx System. Journal of Nano- and Electronic Physics, 9 (2), 02031-1–02031-5. doi: 10.21272/jnep.9(2).02031
  8. Sobol’, O. V. (2016). The influence of nonstoichiometry on elastic characteristics of metastable β-WC1–x phase in ion plasma condensates. Technical Physics Letters, 42 (9), 909–911. doi: 10.1134/s1063785016090108
  9. Pogrebnjak, A. D., Bondar, O. V., Abadias, G., Ivashchenko, V., Sobol, O. V., Jurga, S., Coy, E. (2016). Structural and mechanical properties of NbN and Nb-Si-N films: Experiment and molecular dynamics simulations. Ceramics International, 42 (10), 11743–11756. doi: 10.1016/j.ceramint.2016.04.095
  10. Sobol, O. V., Postelnyk, A. A., Meylekhov, A. A., Andreev, A. A., Stolbovoy, V. A. (2017). Structural Engineering of the Multilayer Vacuum Arc Nitride Coatings Based on Ti, Cr, Mo and Zr. Journal of Nano- and Electronic Physics, 9 (3), 03003-1–03003-6. doi: 10.21272/jnep.9(3).03003
  11. Cavaleiro, A., De Hosson, J. T. M. (Eds.) (2006). Nanostructured coatings. Springer. doi: 10.1007/0-387-48756-5
  12. Musil, J., Kos, Š., Zenkin, S., Čiperová, Z., Javdošňák, D., Čerstvý, R. (2018). β- (Me 1, Me 2) and MeNx films deposited by magnetron sputtering: Novel heterostructural alloy and compound films. Surface and Coatings Technology, 337, 75–81. doi: 10.1016/j.surfcoat.2017.12.057
  13. Sobol’, O. V., Andreev, A. A., Gorban’, V. F., Stolbovoy, V. A., Melekhov, A. A., Postelnyk, A. A. (2016). Possibilities of structural engineering in multilayer vacuum-arc ZrN/CrN coatings by varying the nanolayer thickness and application of a bias potential. Technical Physics, 61 (7), 1060–1063. doi: 10.1134/s1063784216070252
  14. Sobol, O. V., Meylekhov, A. A., Mygushchenko, R. P., Postelnyk, А. А., Sagaidashnikov, Y. Y. (2017). Mixing on the Boundaries of Layers of Multilayer Nanoperiod Coatings of the TiNх/ZrNх System: Simulation and Experiment. Journal of Nano- and Electronic Physics, 9 (6), 06021-1–06021-6. doi: 10.21272/jnep.9(6).06021
  15. Zítek, M., Zeman, P., Zuzjaková, Š., Kotrlová, M., Čerstvý, R. (2018). Tuning properties and behavior of magnetron sputtered Zr-Hf-Cu metallic glasses. Journal of Alloys and Compounds, 739, 848–855. doi: 10.1016/j.jallcom.2017.12.301
  16. Miracle, D. B., Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448–511. doi: 10.1016/j.actamat.2016.08.081
  17. Raghavan, R., Hari Kumar, K. C., Murty, B. S. (2012). Analysis of phase formation in multi-component alloys. Journal of Alloys and Compounds, 544, 152–158. doi: 10.1016/j.jallcom.2012.07.105
  18. Cheng, K.-H., Lai, C.-H., Lin, S.-J., Yeh, J.-W. (2011). Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering. Thin Solid Films, 519 (10), 3185–3190. doi: 10.1016/j.tsf.2010.11.034
  19. Jiang, H., Han, K., Gao, X., Lu, Y., Cao, Z., Gao, M. C. et. al. (2018). A new strategy to design eutectic high-entropy alloys using simple mixture method. Materials & Design, 142, 101–105. doi: 10.1016/j.matdes.2018.01.025
  20. Guo, S., Liu, C. T. (2011). Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science: Materials International, 21 (6), 433–446. doi: 10.1016/s1002-0071(12)60080-x
  21. Liu, L., Zhu, J. B., Hou, C., Li, J. C., Jiang, Q. (2013). Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering. Materials & Design, 46, 675–679. doi: 10.1016/j.matdes.2012.11.001
  22. Cheng, C.-Y., Yang, Y.-C., Zhong, Y.-Z., Chen, Y.-Y., Hsu, T., Yeh, J.-W. (2017). Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys. Current Opinion in Solid State and Materials Science, 21 (6), 299–311. doi: 10.1016/j.cossms.2017.09.002
  23. Hsieh, M.-H., Tsai, M.-H., Shen, W.-J., Yeh, J.-W. (2013). Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings. Surface and Coatings Technology, 221, 118–123. doi: 10.1016/j.surfcoat.2013.01.036
  24. Senkov, O. N., Scott, J. M., Senkova, S. V., Miracle, D. B., Woodward, C. F. (2011). Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds, 509 (20), 6043–6048. doi: 10.1016/j.jallcom.2011.02.171
  25. Tsai, D.-C., Chang, Z.-C., Kuo, L.-Y., Lin, T.-J., Lin, T.-N., Shiao, M.-H., Shieu, F.-S. (2013). Oxidation resistance and structural evolution of (TiVCrZrHf)N coatings. Thin Solid Films, 544, 580–587. doi: 10.1016/j.tsf.2012.12.064
  26. Linder, D., Holmström, E., Norgren, S. (2018). High entropy alloy binders in gradient sintered hardmetal. International Journal of Refractory Metals and Hard Materials, 71, 217–220. doi: 10.1016/j.ijrmhm.2017.11.030
  27. Stepanov, N. D., Yurchenko, N. Y., Zherebtsov, S. V., Tikhonovsky, M. A., Salishchev, G. A. (2018). Aging behavior of the HfNbTaTiZr high entropy alloy. Materials Letters, 211, 87–90. doi: 10.1016/j.matlet.2017.09.094
  28. Huo, W., Zhou, H., Fang, F., Zhou, X., Xie, Z., Jiang, J. (2018). Microstructure and properties of novel CoCrFeNiTa x eutectic high-entropy alloys. Journal of Alloys and Compounds, 735, 897–904. doi: 10.1016/j.jallcom.2017.11.075
  29. Huang, P.-K., Yeh, J.-W. (2009). Effects of substrate bias on structure and mechanical properties of (AlCrNbSiTiV)N coatings. Journal of Physics D: Applied Physics, 42 (11), 115401. doi: 10.1088/0022-3727/42/11/115401
  30. Tsai, D.-C., Shieu, F.-S., Chang, S.-Y., Yao, H.-C., Deng, M.-J. (2010). Structures and Characterizations of TiVCr and TiVCrZrY Films Deposited by Magnetron Sputtering under Different Bias Powers. Journal of The Electrochemical Society, 157 (3), K52. doi: 10.1149/1.3285047
  31. Lim, K. R., Lee, K. S., Lee, J. S., Kim, J. Y., Chang, H. J., Na, Y. S. (2017). Dual-phase high-entropy alloys for high-temperature structural applications. Journal of Alloys and Compounds, 728, 1235–1238. doi: 10.1016/j.jallcom.2017.09.089
  32. Wang, S.-P., Xu, J. (2018). (TiZrNbTa)-Mo high-entropy alloys: Dependence of microstructure and mechanical properties on Mo concentration and modeling of solid solution strengthening. Intermetallics, 95, 59–72. doi: 10.1016/j.intermet.2018.01.017
  33. Anzorena, M. S., Bertolo, A. A., Gagetti, L., Kreiner, A. J., Mosca, H. O., Bozzolo, G., del Grosso, M. F. (2016). Characterization and modeling of a MoTaVWZr high entropy alloy. Materials & Design, 111, 382–388. doi: 10.1016/j.matdes.2016.09.006
  34. Kumar, D., Maulik, O., Bagri, A. S., Prasad, Y. V. S. S., Kumar, V. (2016). Microstructure and Characterization of Mechanically Alloyed Equiatomic AlCuCrFeMnW High Entropy Alloy. Materials Today: Proceedings, 3 (9), 2926–2933. doi: 10.1016/j.matpr.2016.09.005
  35. Vida, Á., Chinh, N. Q., Lendvai, J., Heczel, A., Varga, L. K. (2017). Microstructures and transition from brittle to ductile behavior of NiFeCrMoW High Entropy Alloys. Materials Letters, 195, 14–17. doi: 10.1016/j.matlet.2017.02.063
  36. Barmin, A. E., Sobol’, O. V., Zubkov, A. I., Mal’tseva, L. A. (2015). Modifying effect of tungsten on vacuum condensates of iron. The Physics of Metals and Metallography, 116 (7), 706–710. doi: 10.1134/s0031918x15070017
  37. Mikhailov, I. F., Baturin, A. A., Mikhailov, A. I., Fomina, L. P. (2014). X-ray fluorescence determination of trace gold in an ion-exchange resin. Inorganic Materials, 50 (14), 1402–1404. doi: 10.1134/s002016851414009x
  38. Mamaluy, A. A., Mikhailov, A. I., Fomina, L. P. (2015). Optimization for the range of analytical line intensity measurement in energy-dispersion x-ray fluorescent analysis. Problems of Atomic Science and Technology, 5 (99), 174–176.
  39. Wieser, M. E., Holden, N., Coplen, T. B., Böhlke, J. K., Berglund, M., Brand, W. A. et. al. (2013). Atomic weights of the elements 2011 (IUPAC Technical Report). Pure and Applied Chemistry, 85 (5), 1047–1078. doi: 10.1351/pac-rep-13-03-02
  40. Meija, J., Coplen, T. B., Berglund, M., Brand, W. A., De Bièvre, P., Gröning, M. et. al. (2016). Atomic weights of the elements 2013 (IUPAC Technical Report). Pure and Applied Chemistry, 88 (3). doi: 10.1515/pac-2015-0305
  41. Lide, D. R. (Ed.) (2009). CRC Handbook of Chemistry and Physics. CRC Press, 2828.

Downloads

Published

2018-03-21

How to Cite

Sobol’, O., Barmin, A., Hryhorieva, S., Gorban’, V., Vuets, A., & Subbotin, A. (2018). Influence of the thermal factor on the composition of electron­beam high­entropy ALTiVCrNbMo coatings. Eastern-European Journal of Enterprise Technologies, 2(12 (92), 39–46. https://doi.org/10.15587/1729-4061.2018.126545

Issue

Section

Materials Science