Plasmochemical preparation of silver nanoparticles: thermodynamics and kinetics analysis of the process

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.127103

Keywords:

low-temperature plasma, discharge, formation, process, Gibbs free energy, thermodynamic potential, Nernst equation, rate constant

Abstract

The thermodynamics and kinetics analysis of the plasmochemical formation of silver nanoparticles is performed. The thermodynamics analysis is made on the basis of calculation of the Gibbs free energy of formation of silver nanoparticles in an aqueous medium by various methods. It was found that the Gibbs free energy in aqueous solutions increases with decreasing size of silver particles. Based on experimental data, it was determined that the average size of plasmochemically prepared particles depends on the initial concentration of silver ions in the solution and equals 36.5–60.1 nm for 0.25–3.0 mmol/l.

The kinetics of chemical conversion in aqueous solutions of silver nitrate under plasma treatment conditions in a gas-liquid plasmochemical batch reactor is investigated. The curves of Ag+ dependence on duration of plasmochemical treatment of solutions and initial concentration of silver ions are given. It is found that the process of plasmochemical formation of silver nanoparticles is the second-order reaction. The rate constant of formation of silver nanoparticles is k=0.07–1.53 mol-1∙dm3∙min-1 depending on the initial concentration of silver ions. It is shown that the formation of silver nanodispersions under plasma discharge impact is characterized by the presence of the peak λmax=400–440 nm.

Author Biographies

Margarita Skiba, Ukrainian State University of Chemical Technology Gagarinа ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Inorganic Materials Technology and Ecology

Alexander Pivovarov, Ukrainian State University of Chemical Technology Gagarinа ave., 8, Dnipro, Ukraine, 49005

Doctor of Technical Sciences, Professor, Rector

Department of Inorganic Materials Technology and Ecology

Anna Makarova, Ukrainian State University of Chemical Technology Gagarinа ave., 8, Dnipro, Ukraine, 49005

Postgraduate Student

Department of Inorganic Materials Technology and Ecology

Viktoria Vorobyova, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Senior Lecturer

Department of Physical Chemistry

References

  1. Fridman, A., Yang, Y., Cho, Y. I. (2012). Plasma discharge in liquid: water treatment and applications. Taylor&Francis Group, 210. doi: 10.1201/b11650
  2. Mariotti, D., Patel, J., Švrček, V., Maguire, P. (2012). Plasma-Liquid Interactions at Atmospheric Pressure for Nanomaterials Synthesis and Surface Engineering. Plasma Processes and Polymers, 9 (11-12), 1074–1085. doi: 10.1002/ppap.201200007
  3. Skiba, M., Pivovarov, A., Makarova, A., Pasenko, O., Khlopytskyi, A., Vorobyova, V. (2017). Plasma-chemical formation of silver nanodisperssion in water solutions. Eastern-European Journal of Enterprise Technologies, 6 (6 (90)), 59–65. doi: 10.15587/1729-4061.2017.118914
  4. Levard, C., Hotze, E. M., Lowry, G. V., Brown, G. E. (2012). Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity. Environmental Science & Technology, 46 (13), 6900–6914. doi: 10.1021/es2037405
  5. Jia, Z., Ben Amar, M., Brinza, O., Astafiev, A., Nadtochenko, V., Evlyukhin, A. B. et. al. (2012). Growth of Silver Nanoclusters on Monolayer Nanoparticulate Titanium-oxo-alkoxy Coatings. The Journal of Physical Chemistry C, 116 (32), 17239–17247. doi: 10.1021/jp303356y
  6. Sirenko, A. N., Belashchenko, D. K. (2012). Thermodynamic properties of silver nanoclusters. Inorganic Materials, 48 (4), 332–336. doi: 10.1134/s0020168512040140
  7. Sawyer, C. N., McCarty, P. L., Parkin, G. F. (2003). Chemistry for Environmental Engineering and Science. New York: McGrow Hill, 742.
  8. Ivanova, O. S., Zamborini, F. P. (2010). Size-Dependent Electrochemical Oxidation of Silver Nanoparticles. Journal of the American Chemical Society, 132 (1), 70–72. doi: 10.1021/ja908780g
  9. Zhang, W., Yao, Y., Sullivan, N., Chen, Y. (2011). Modeling the Primary Size Effects of Citrate-Coated Silver Nanoparticles on Their Ion Release Kinetics. Environmental Science & Technology, 45 (10), 4422–4428. doi: 10.1021/es104205a
  10. Lin, S., Cheng, Y., Liu, J., Wiesner, M. R. (2012). Polymeric Coatings on Silver Nanoparticles Hinder Autoaggregation but Enhance Attachment to Uncoated Surfaces. Langmuir, 28 (9), 4178–4186. doi: 10.1021/la202884f
  11. Liu, J., Hurt, R. H. (2010). Ion Release Kinetics and Particle Persistence in Aqueous Nano-Silver Colloids. Environmental Science & Technology, 44 (6), 2169–2175. doi: 10.1021/es9035557
  12. Peretyazhko, T. S., Zhang, Q., Colvin, V. L. (2014). Size-Controlled Dissolution of Silver Nanoparticles at Neutral and Acidic pH Conditions: Kinetics and Size Changes. Environmental Science & Technology, 48 (20), 11954–11961. doi: 10.1021/es5023202
  13. Ijaz Hussain, J., Kumar, S., Adil Hashmi, A., Khan, Z. (2011). Silver Nanoparticles: Preparation, Characterization, And Kinetics. Advanced Materials Letters, 2 (3), 188–194. doi: 10.5185/amlett.2011.1206
  14. Pivovarov, A. A., Kravchenko, A. V., Tishchenko, A. P., Nikolenko, N. V., Sergeeva, O. V., Vorob’eva, M. I., Treshchuk, S. V. (2015). Contact nonequilibrium plasma as a tool for treatment of water and aqueous solutions: Theory and practice. Russian Journal of General Chemistry, 85 (5), 1339–1350. doi: 10.1134/s1070363215050497
  15. Pivovarov, О. А., Skіba, М. І., Makarova, А. K., Vorobyova, V. І., Pasenko, О. О. (2017). Plasma-chemical obtaining of silver nanoparticles in the presence of sodium alginate. Voprosy khimii i khimicheskoi tekhnologii, 6 (115), 82–88.
  16. Kuna, J. J., Voïtchovsky, K., Singh, C., Jiang, H., Mwenifumbo, S., Ghorai, P. K. et. al. (2009). The effect of nanometre-scale structure on interfacial energy. Nature Materials, 8 (10), 837–842. doi: 10.1038/nmat2534
  17. Khanna, P. K., Singh, N., Kulkarni, D., Deshmukh, S., Charan, S., Adhyapak, P. V. (2007). Water based simple synthesis of re-dispersible silver nano-particles. Materials Letters, 61 (16), 3366–3370. doi: 10.1016/j.matlet.2006.11.064
  18. Kiss, F. D., Miotto, R., Ferraz, A. C. (2011). Size effects on silver nanoparticles’ properties. Nanotechnology, 22 (27), 275708. doi: 10.1088/0957-4484/22/27/275708

Downloads

Published

2018-03-27

How to Cite

Skiba, M., Pivovarov, A., Makarova, A., & Vorobyova, V. (2018). Plasmochemical preparation of silver nanoparticles: thermodynamics and kinetics analysis of the process. Eastern-European Journal of Enterprise Technologies, 2(6 (92), 4–9. https://doi.org/10.15587/1729-4061.2018.127103

Issue

Section

Technology organic and inorganic substances