Development of a method for the experimental estimation of multimedia data flow rate in a computer network

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.128045

Keywords:

network traffic analysis, statistical processing of results of experiment, data flow rate

Abstract

We have developed a method for the experimental estimation of rate of multimedia data stream in a computer network based on the methods of mathematical statistics. The method, in contrast to the existing ones, is based on considering the rate of multimedia data stream as a random variable that obeys the normal distribution law.

When designing computer networks, in order to estimate the required throughput, mathematical streaming traffic models are applied. Such an approach is justified when the constraints of mathematical models are met, such as stationarity, ordinarity, and the absence of aftereffect for the Poisson stream of packets.

Under actual conditions, estimates for characteristics of data flow, derived using existing models, may prove to be too conservative as a result of failure to comply with conditions of stationarity of the packet stream.

An alternative way for solving a given task is the development of a statistical experimental method for estimating the rate of multimedia data stream in a computer network. The proposed method makes it possible to derive the values of mathematical expectation and a standard deviation in data transmission rate, as well as to estimate consistency of the hypothesis about a normal character of the distribution law of multimedia data flow rate.

The experimental estimates are given for the multimedia data stream rate in a computer network at different values of resolution and frame rate of the video. These results showed that the experimental estimates exceed analytical data by 3...20 %.

The values of multimedia data flow rate estimates, acquired using the proposed method, could be used to estimate the load of segments in the designed computer network, as well as to explore the throughput of segments in the existing computer network.

Author Biographies

Dmytro Sumtsov, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkіv, Ukraine, 61166

PhD, Associate Professor

Department of Electronic Computers

Serhii Osiievskyi, Ivan Kozhedub Kharkiv University of Air Force Sumska str, 77/79, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of Mathematical and Software of Automated Control Systems

Valentyn Lebediev, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkіv, Ukraine, 61166

Department of Electronic Computers

References

  1. Tkachov, V. M., Tokariev, V. V., Radchenko, V. O., Lebediev, V. O. (2017). The Problem of Big Data Transmission in the Mobile "Multi-Copter – Sensor Network" System. Control, Navigation and Communication Systems, 2, 154–157. Available at: http://nbuv.gov.ua/UJRN/suntz_2017_2_40
  2. Padhye, J., Firoiu, V., Towsley, D. F., Kurose, J. F. (2000). Modeling TCP Reno performance: a simple model and its empirical validation. IEEE/ACM Transactions on Networking, 8 (2), 133–145. doi: 10.1109/90.842137
  3. Dunaytsev, R. (2010). TCP performance evaluation over wired and wired-cum-wireless networks. Tampere University of Technology, 873. Availableat: http://urn.fi/URN:NBN:fi:tty-201006031138
  4. Dunaytsev, R., Koucheryavy, Y., Harju, J. (2006). The PFTK-model revised. Computer Communications, 29 (13-14), 2671–2679. doi: 10.1016/j.comcom.2006.01.035
  5. Parvez, N., Mahanti, A., Williamson, C. (2010). An Analytic Throughput Model for TCP NewReno. IEEE/ACM Transactions on Networking, 18 (2), 448–461. doi: 10.1109/tnet.2009.2030889
  6. Ruban, I. V., Sumtsov, D. V., Hladenko, M. I. (2003). Ocenka harakteristik obmena mul'timediynoy informaciey v korporativnyh setyah. Radioelectronic and Computer Systems, 3, 177–179. Available at: http://nbuv.gov.ua/UJRN/recs_2003_3_32
  7. Yevseiev, S. P., Rzayev, H. N., Ostapov, S. E., Nikolaenko, V. I. (2017). Data exchange evaluation in global networks based on integrated quality indicator of service network. Radio Electronics, Computer Science, Control, 1, 115–128. doi: 10.15588/1607-3274-2017-1-14
  8. Yevseiev, S., Ponomarenko, V., Rayevnyeva, O. (2017). Assessment of functional efficiency of a corporate scientific-educational network based on the comprehensive indicators of quality of service. Eastern-European Journal of Enterprise Technologies, 6 (2 (90)), 4–15. doi: 10.15587/1729-4061.2017.118329
  9. Yevseiev, S. P., Sumtsov, D. V., Korol, O. H., Tomashevskyi, B. P. (2010). The analysis of data transfer efficiency in computer systems with usage of the integrated mechanisms of reliability and safety support. Eastern-European Journal of Enterprise Technologies, 2 (2 (44)), 45–49. Available at: http://journals.uran.ua/eejet/article/view/2622/2428
  10. Sumtsov, D. V., Yevseiev, S. P., Tomashevskyi, B. P., Korol, O. H. (2009). Effektivnost' obmena dannymi v komp'yuternoy seti pri razlichnyh sposobah upravleniya obmenom. Sbornik nauchnyh trudov Doneckogo instituta zheleznodorozhnogo transporta, 17, 33–45. Available at: https://cyberleninka.ru/article/n/effektivnost-obmena-dannymi-v-kompyuternoy-seti-pri-razlichnyh-sposobah-upravleniya-obmenom
  11. Sumtsov, D. V., Tomashevskyi, B. P., Nosyk, A. M. (2009). Obshchiy pokazatel' effektivnosti peredachi dannyh v komp'yuternoy seti. Information Processing Systems, 7, 85–90. Available at: http://nbuv.gov.ua/UJRN/soi_2009_7_23
  12. Ruban, I. V., Davikoza, O. P., Kalachova, V. V., Dudenko, S. V. (2013). Vybir pokaznykiv ta kryteriu efektyvnosti peredachi danykh v telekomunikatsiyniy merezhi ASU aviatsiyi ta PPO. Science and Technology of the Air Force of Ukraine, 1, 123–125. Available at: http://nbuv.gov.ua/UJRN/Nitps_2013_1_27
  13. Ruban, I. V., Romanenko, I. O., Aleksieiev, S. V., Dolhyi, Yu. S. (2010). Matematicheskaya model' processa peredachi dannyh v rezhime obnaruzheniya oshibok poluchatelem s uchetom otkazov na uzlah kommutacii. Control, Navigation and Communication Systems, 3 (15), 240–242. Available at: http://openarchive.nure.ua/bitstream/document/3391/1/Romanen.pdf
  14. Ruban, I. V., Kuchuk, H. A., Davikoza, O. P. (2013). Kontseptualnyi pidkhid do syntezu struktury informatsiyno-telekomunikatsiynoi merezhi. Information Processing Systems, 7, 106–112. Available at: http://nbuv.gov.ua/UJRN/soi_2013_7_28
  15. Caceres, R., Duffield, N., Feldmann, A., Friedmann, J. D., Greenberg, A., Greer, R. et. al. (2000). Measurement and analysis of IP network usage and behavior. IEEE Communications Magazine, 38 (5), 144–151. doi: 10.1109/35.841839
  16. Dabir, A., Matrawy, A. (2007). Bottleneck Analysis of Traffic Monitoring using Wireshark. 2007 Innovations in Information Technologies (IIT). doi: 10.1109/iit.2007.4430446
  17. Mistry, D., Modi, P., Deokule, K., Patel, A., Patki, H., Abuzaghleh, O. (2016). Network traffic measurement and analysis. 2016 IEEE Long Island Systems, Applications and Technology Conference (LISAT). doi: 10.1109/lisat.2016.7494141
  18. Buranova, M. A., Kartashevskyi, V. H., Samoilov, M. S. (2013). The comparative analysis of statistical characteristics of the video traffic in networks of the packet transmission of data. Infokommunikacionnye tehnologii, 11 (4), 33–39. URL: https://readera.ru/read/140191662
  19. Venttsel, H. S., Ovcharov, L. A. (2000). Probability Theory and its Engineering Applications. Moscow: Vysshaya shkola, 480.

Downloads

Published

2018-04-05

How to Cite

Sumtsov, D., Osiievskyi, S., & Lebediev, V. (2018). Development of a method for the experimental estimation of multimedia data flow rate in a computer network. Eastern-European Journal of Enterprise Technologies, 2(2 (92), 56–64. https://doi.org/10.15587/1729-4061.2018.128045