Forming the low­porous layers of indium phosphide with the predefined quality level

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.133193

Keywords:

Indium phosphide, electrochemical etching, morphological indicators, porous semiconductors, quality criterion

Abstract

The morphological quality criterion was developed to have a possibility of formation of nanostructured layers on semiconductor surface with adjustable properties. The layers of low-porous indium phosphide with mesoporous structure were obtained. The porous layers were formed by the method of electrochemical etching in the solution of hydrochloric acid at constant current density. According to the developed criterion, the quality of synthesized por-InP samples was analyzed. This will make it possible to manufacture the structures with porous layers on the surface on an industrial scale. The presented criterion can be applied to other modes of treatment of indium phosphide or to other semiconductors. This will make it possible to treat it as a universal morphological criterion of quality of porous structures. The correlation between morphological properties of porous structures on the surface of indium phosphide and etching conditions was established. To do this, porous structures, which were formed in the interval of etching time from 10 to 20 min at different concentration of acid in the electrolyte, were analyzed. As a result, it was established that the shape of the pores of nanostructured layers on the surface of semiconductors depends not only on parameters of a crystal, but also on etching conditions, specifically, on etching time and electrolyte composition. The application of saturated electrolytes leads to formation of massive groove-shaped pores – elongated ellipses. The obtained correlations are useful from the practical point of view, as they make it possible to approach reasonably determining the modes of electrochemical treatment of semiconductors.

In addition, it opens up new prospects in the construction of the model of self-organization of a porous structure on the surface of semiconductors. The technique of calculating basic statistical characteristics of the series of distribution of pores by dimensions, specifically, the variation span, dispersion, mean deviation, coefficients of variation and asymmetry was presented. This makes it possible to evaluate in detail the morphological indicators of porous structures and to progress in understanding the mechanisms behind the pore formation on the surface of semiconductors during electrochemical treatment.

Author Biographies

Sergij Vambol, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor, Head of Department

Department of Applied Mechanics

Igor Bogdanov, Berdyansk State Pedagogical University Shmidta str., 4, Berdyansk, Ukraine, 71100

Doctor of Pedagogical Sciences, Professor, Rector

Viola Vambol, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Associate Professor

Department of Labour Protection and Technogenic and Ecological Safety

Yana Suchikova, Berdyansk State Pedagogical University Shmidta str., 4, Berdyansk, Ukraine, 71100

PhD, Associate Professor

Department of Vocational Education

Olexandr Kondratenko, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of Applied Mechanics

References

  1. Benor, A. (2018). New insights into the oxidation rate and formation of porous structures on silicon. Materials Science and Engineering: B, 228, 183–189. doi: 10.1016/j.mseb.2017.11.015
  2. Vambol, S. O., Bohdanov, I. T., Vambol, V. V., Suchikova, Y. O. et. al. (2017). Formation of Filamentary Structures of Oxide on the Surface of Monocrystalline Gallium Arsenide. Journal of Nano- and Electronic Physics, 9 (6), 06016–1–06016–4. doi: 10.21272/jnep.9(6).06016
  3. Khalil, M., Jan, B. M., Tong, C. W., Berawi, M. A. (2017). Advanced nanomaterials in oil and gas industry: Design, application and challenges. Applied Energy, 191, 287–310. doi: 10.1016/j.apenergy.2017.01.074
  4. Sun, H., Deng, J., Qiu, L., Fang, X., Peng, H. (2015). Recent progress in solar cells based on one-dimensional nanomaterials. Energy & Environmental Science, 8 (4), 1139–1159. doi: 10.1039/c4ee03853c
  5. Suchikova, Y. A. (2015). Synthesis of indium nitride epitaxial layers on a substrate of porous indium phosphide. Journal of Nano- and Electronic Physics, 7 (3), 03017-1–03017-3.
  6. Peng, S., Jin, G., Li, L., Li, K., Srinivasan, M., Ramakrishna, S., Chen, J. (2016). Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chemical Society Reviews, 45 (5), 1225–1241. doi: 10.1039/c5cs00777a
  7. Bina, M., Grasselli, F., Paris, M. G. A. (2018). Continuous-variable quantum probes for structured environments. Physical Review A, 97 (1). doi: 10.1103/physreva.97.012125
  8. Sepehri-Amin, H., Iwama, H., Hrkac, G., Butler, K. T., Shima, T., Hono, K. (2017). Pt surface segregation in L1 0 -FePt nano-grains. Scripta Materialia, 135, 88–91. doi: 10.1016/j.scriptamat.2017.03.035
  9. Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2010). Preparation of nanoporous n–InP(100) layers by electrochemical etching in HCI solution. Functional Materials, 17 (1), 131–134.
  10. Hussein, H. E. M., Amari, H., Macpherson, J. V. (2017). Electrochemical Synthesis of Nanoporous Platinum Nanoparticles Using Laser Pulse Heating: Application to Methanol Oxidation. ACS Catalysis, 7 (10), 7388–7398. doi: 10.1021/acscatal.7b02701
  11. Suchikova, Y., Kidalov, V., Sukach, G. (2010). Blue shift of photoluminescence spectrum of porous InP. ECS Transactions, 25 (24), 59–64. doi: 10.1149/1.3316113
  12. Föll, H., Carstensen, J., Frey, S. (2006). Porous and Nanoporous Semiconductors and Emerging Applications. Journal of Nanomaterials, 2006, 1–10. doi: 10.1155/jnm/2006/91635
  13. Tiginyanu, I., Monaico, E., Sergentu, V., Tiron, A., Ursaki, V. (2014). Metallized Porous GaP Templates for Electronic and Photonic Applications. ECS Journal of Solid State Science and Technology, 4 (3), P57–P62. doi: 10.1149/2.0011503jss
  14. Standing, A., Assali, S., Gao, L., Verheijen, M. A., van Dam, D., Cui, Y. et. al. (2015). Efficient water reduction with gallium phosphide nanowires. Nature Communications, 6 (1). doi: 10.1038/ncomms8824
  15. Monaico, E., Colibaba, G., Nedeoglo, D., Nielsch, K. (2014). Porosification of III–V and II–VI Semiconductor Compounds. Journal of Nanoelectronics and Optoelectronics, 9 (2), 307–311. doi: 10.1166/jno.2014.1581
  16. Bioud, Y. A., Boucherif, A., Belarouci, A., Paradis, E., Drouin, D., Arès, R. (2016). Chemical Composition of Nanoporous Layer Formed by Electrochemical Etching of p-Type GaAs. Nanoscale Research Letters, 11 (1). doi: 10.1186/s11671-016-1642-z
  17. Ocier, C. R., Krueger, N. A., Zhou, W., Braun, P. V. (2017). Tunable Visibly Transparent Optics Derived from Porous Silicon. ACS Photonics, 4 (4), 909–914. doi: 10.1021/acsphotonics.6b01001
  18. Tan, D., Lim, H. E., Wang, F., Mohamed, N. B., Mouri, S., Zhang, W. et. al. (2016). Anisotropic optical and electronic properties of two-dimensional layered germanium sulfide. Nano Research, 10 (2), 546–555. doi: 10.1007/s12274-016-1312-6
  19. Vambol, S., Bogdanov, I., Vambol, V., Suchikova, Y., Lopatina, H., Tsybuliak, N. (2017). Research into effect of electrochemical etching conditions on the morphology of porous gallium arsenide. Eastern-European Journal of Enterprise Technologies, 6 (5 (90)), 22–31. doi: 10.15587/1729-4061.2017.118725
  20. Dubey, R. S. (2013). Electrochemical Fabrication of Porous Silicon Structures for Solar Cells. Nanoscience and Nanoengineering, 1 (1), 36–40.
  21. Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2010). Influence of the Carrier Concentration of Indium Phosphide on the Porous Layer Formation. Journal of Nano- and Electronic Physics, 2 (4), 142–147.
  22. Sychikova, Y. A., Kidalov, V. V., Sukach, G. A. (2013). Dependence of the threshold voltage in indium-phosphide pore formation on the electrolyte composition. Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques, 7 (4), 626–630. doi: 10.1134/s1027451013030130
  23. Bremus-Koebberling, E. A., Beckemper, S., Koch, B., Gillner, A. (2012). Nano structures via laser interference patterning for guided cell growth of neuronal cells. Journal of Laser Applications, 24 (4), 042013. doi: 10.2351/1.4730804
  24. Beckemper, S. (2011). Generation of Periodic Micro- and Nano-structures by Parameter-Controlled Three-beam Laser Interference Technique. Journal of Laser Micro/Nanoengineering, 6 (1), 49–53. doi: 10.2961/jlmn.2011.01.0011
  25. Gerngross, M.-D., Carstensen, J., Föll, H. (2014). Electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes: FFT-impedance spectroscopy of the growth process and magnetic properties. Nanoscale Research Letters, 9 (1), 316. doi: 10.1186/1556-276x-9-316
  26. Monaico, E., Tiginyanu, I., Volciuc, O., Mehrtens, T., Rosenauer, A., Gutowski, J., Nielsch, K. (2014). Formation of InP nanomembranes and nanowires under fast anodic etching of bulk substrates. Electrochemistry Communications, 47, 29–32. doi: 10.1016/j.elecom.2014.07.015
  27. Shukla, S., Oturan, M. A. (2015). Dye removal using electrochemistry and semiconductor oxide nanotubes. Environmental Chemistry Letters, 13 (2), 157–172. doi: 10.1007/s10311-015-0501-y
  28. Ma, N., Chen, Y., Zhao, S., Li, J., Shan, B., Sun, J. (2018). Preparation of super-hydrophobic surface on Al–Mg alloy substrate by electrochemical etching. Surface Engineering, 1–9. doi: 10.1080/02670844.2017.1421883
  29. Qi, X., Fang, X., Zhu, D. (2018). Investigation of electrochemical micromachining of tungsten microtools. International Journal of Refractory Metals and Hard Materials, 71, 307–314. doi: 10.1016/j.ijrmhm.2017.11.045
  30. Ulin, V. P., Konnikov, S. G. (2007). Electrochemical pore formation mechanism in III–V crystals (Part I). Semiconductors, 41 (7), 832–844. doi: 10.1134/s1063782607070111
  31. Suchikova, Y. A., Kidalov, V. V., Balan, O. S., Sukach, G. A. (2010). Texturation of the Phosphide Indium Surface. Journal of Nano- and Electronic Physics, 2 (1), 50–53.
  32. Langa, S., Tiginyanu, I. M., Carstensen, J., Christophersen, M., Föll, H. (2003). Self-organized growth of single crystals of nanopores. Applied Physics Letters, 82 (2), 278–280. doi: 0.1063/1.1537868
  33. Langa, S., Carstensen, J., Christophersen, M., Steen, K., Frey, S., Tiginyanu, I. M., Föll, H. (2005). Uniform and Nonuniform Nucleation of Pores during the Anodization of Si, Ge, and III-V Semiconductors. Journal of The Electrochemical Society, 152 (8), C525. doi: 10.1149/1.1940847
  34. Buckley, D. N., Lynch, R. P., Quill, N., O’Dwyer, C. (2015). Propagation of Nanopores and Formation of Nanoporous Domains during Anodization of n-InP in KOH. ECS Transactions, 69 (14), 17–32. doi: 10.1149/06914.0017ecst
  35. Su, G., Guo, Q., Palmer, R. E. (2003). Patterned arrays of porous InP from photolithography and electrochemical etching. Journal of Applied Physics, 94 (12), 7598. doi: 10.1063/1.1628836
  36. Monaico, E., Tiginyanu, I., Volciuc, O., Mehrtens, T., Rosenauer, A., Gutowski, J., Nielsch, K. (2014). Formation of InP nanomembranes and nanowires under fast anodic etching of bulk substrates. Electrochemistry Communications, 47, 29–32. doi: 10.1016/j.elecom.2014.07.015
  37. Zhang, Y., Cao, L., Chai, X., Liang, K., Han, Y., Wang, Y. et. al. (2016). Transferring porous layer from InP wafer based on the disturbance. 2016 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). doi: 10.1109/3m-nano.2016.7824988
  38. Vambol, S., Bogdanov, I., Vambol, V., Suchikova, Y., Kondratenko, O., Hurenko, O., Onishchenko, S. (2017). Research into regularities of pore formation on the surface of semiconductors. Eastern-European Journal of Enterprise Technologies, 3 (5 (87)), 37–44. doi: 10.15587/1729-4061.2017.104039
  39. Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2009). Influence of type anion of electrolit on morphology porous InP obtained by electrochemical etching. Journal of Nano- and Electronic Physics, 1 (4), 111–118.
  40. Quill, N., Green, L., O’Dwyer, C., Buckley, D. N., Lynch, R. P. (2017). Electrochemical Pore Formation in InP: Understanding and Controlling Pore Morphology. ECS Transactions, 75 (40), 29–43. doi: 10.1149/07540.0029ecst
  41. Vambol, S., Vambol, V., Bogdanov, I., Suchikova, Y., Rashkevich, N. (2017). Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 57–64. doi: 10.15587/1729-4061.2017.118213
  42. Udupa, A., Yu, X., Edwards, L., Goddard, L. L. (2018). Selective area formation of arsenic oxide-rich octahedral microcrystals during photochemical etching of n-type GaAs. Optical Materials Express, 8 (2), 289. doi: 10.1364/ome.8.000289
  43. Bashkany, Z. A., Abbas, I. K., Mahdi, M. A., Al-Taay, H. F., Jennings, P. (2016). A Self-Powered Heterojunction Photodetector Based on a PbS Nanostructure Grown on Porous Silicon Substrate. Silicon, 10 (2), 403–411. doi: 10.1007/s12633-016-9462-4
  44. Rowe, D. M. (Ed.) (2005). Thermoelectrics handbook: macro to nano. CRC Press, 1008. doi: 10.1201/9781420038903

Downloads

Published

2018-06-08

How to Cite

Vambol, S., Bogdanov, I., Vambol, V., Suchikova, Y., & Kondratenko, O. (2018). Forming the low­porous layers of indium phosphide with the predefined quality level. Eastern-European Journal of Enterprise Technologies, 3(12 (93), 48–55. https://doi.org/10.15587/1729-4061.2018.133193

Issue

Section

Materials Science