Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors

Authors

  • Vadym Kovalenko Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0002-8012-6732
  • Valerii Kotok Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0001-8879-7189

DOI:

https://doi.org/10.15587/1729-4061.2018.133548

Keywords:

nickel hydroxide, specific capacity, supercapacitor, ultrasound treatment, template synthesis, polyvinyl alcohol

Abstract

Nickel hydroxide is widely used as an active materials of supercapacitors. The most active are Ni(OH)2 (α+β) samples with layered structure synthesized in a slit-diaphragm electrolyzer. The study on the influence of template synthesis and ultrasound treatment on the characteristics of the samples was conducted. The synthesis of nickel hydroxide samples in the presence of polyvinyl alcohol as a template and the use of ultrasound treatment of the Ni(OH)2 suspension directly after formation was carried out. The synthesized samples of nickel hydroxide were studied by means X-ray diffraction analysis, scanning electron microscopy, and BET nitrogen adsorption-desorption. Electrochemical characteristics were evaluated by means of galvanostatic charge-discharge cycling in the supercapacitor regime. Comparative analysis of the Ni(OH)2 sample has revealed both negative and positive effect of the template and ultrasound. The use of PVA as a template and ultrasound treatment resulted in a significant decrease in specific surface area (to 6 m2/g) and an increase of the average pore diameter (to 1181 Ǻ). Application of the template and ultrasound decreases crystallinity and increases the content of α-form, which results in the increased capacity of the samples. The maximum value of 233 F/g is achieved at a current density of 40 mA/cm2 obtained from the combined effect of the template and ultrasound. Under these conditions, the specific capacity of the sample prepared without the template and ultrasound is 76 F/g. However, with an increase of current density to 120 mA/cm2, the capacity of this sample increases to 303 F/g. At the same time, for samples synthesized with the template and ultrasound, a decrease of capacity is observed at higher current densities, which is related to difficulties in the breakdown of agglomerated particles. In case of the introduced template, this is explained by the binding effect of the remaining PVA and in case of ultrasound treatment – particle condensation. Based on the results of the comparative analysis, it is recommended to replace the template with a more easily removable one and also conduct an electrochemical synthesis of Ni(OH)2 in SDE directly in the ultrasound field and increase the power of the emitter.

Author Biographies

Vadym Kovalenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Analytical Chemistry and Food Additives and Cosmetics

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

Valerii Kotok, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

References

  1. Simon, P., Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature Materials, 7 (11), 845–854. doi: 10.1038/nmat2297
  2. Burke, A. (2007). R&D considerations for the performance and application of electrochemical capacitors. Electrochimica Acta, 53 (3), 1083–1091. doi: 10.1016/j.electacta.2007.01.011
  3. Lang, J.-W., Kong, L.-B., Liu, M., Luo, Y.-C., Kang, L. (2009). Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. Journal of Solid State Electrochemistry, 14 (8), 1533–1539. doi: 10.1007/s10008-009-0984-1
  4. Lang, J.-W., Kong, L.-B., Wu, W.-J., Liu, M., Luo, Y.-C., Kang, L. (2008). A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. Journal of Solid State Electrochemistry, 13 (2), 333–340. doi: 10.1007/s10008-008-0560-0
  5. Aghazadeh, M., Ghaemi, M., Sabour, B., Dalvand, S. (2014). Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. Journal of Solid State Electrochemistry, 18 (6), 1569–1584. doi: 10.1007/s10008-014-2381-7
  6. Zheng, C., Liu, X., Chen, Z., Wu, Z., Fang, D. (2014). Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route. Journal of Central South University, 21 (7), 2596–2603. doi: 10.1007/s11771-014-2218-7
  7. Wang, B., Williams, G. R., Chang, Z., Jiang, M., Liu, J., Lei, X., Sun, X. (2014). Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties. ACS Applied Materials & Interfaces, 6 (18), 16304–16311. doi: 10.1021/am504530e
  8. Kovalenko, V., Kotok, V., Bolotin, O. (2016). Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (83)), 17–22. doi: 10.15587/1729-4061.2016.79406
  9. Ramesh, T. N., Kamath, P. V., Shivakumara, C. (2005). Correlation of Structural Disorder with the Reversible Discharge Capacity of Nickel Hydroxide Electrode. Journal of The Electrochemical Society, 152 (4), A806. doi: 10.1149/1.1865852
  10. Zhao, Y., Zhu, Z., Zhuang, Q.-K. (2005). The relationship of spherical nano-Ni(OH)2 microstructure with its voltammetric behavior. Journal of Solid State Electrochemistry, 10 (11), 914–919. doi: 10.1007/s10008-005-0035-5
  11. Jayashree, R. S., Kamath, P. V., Subbanna, G. N. (2000). The Effect of Crystallinity on the Reversible Discharge Capacity of Nickel Hydroxide. Journal of The Electrochemical Society, 147 (6), 2029. doi: 10.1149/1.1393480
  12. Jayashree, R.S., Vishnu Kamath, P. (1999) Factors governing the electrochemical synthesis of a-nickel (II) hydroxide. J. Appl. Electrochem. 29, 449-454.
  13. Ramesh, T. N., Kamath, P. V. (2006). Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder. Journal of Power Sources, 156 (2), 655–661. doi: 10.1016/j.jpowsour.2005.05.050
  14. Rajamathi, M., Vishnu Kamath, P., Seshadri, R. (2000). Polymorphism in nickel hydroxide: role of interstratification. Journal of Materials Chemistry, 10 (2), 503–506. doi: 10.1039/a905651c
  15. Hu, M., Yang, Z., Lei, L., Sun, Y. (2011). Structural transformation and its effects on the electrochemical performances of a layered double hydroxide. Journal of Power Sources, 196 (3), 1569–1577. doi: 10.1016/j.jpowsour.2010.08.041
  16. Solovov, V., Kovalenko, V., Nikolenko, N., Kotok, V., Vlasova, E. (2017). Influence of temperature on the characteristics of Ni(II), Ti(IV) layered double hydroxides synthesised by different methods. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 16–22. doi: 10.15587/1729-4061.2017.90873
  17. Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: 10.15587/1729-4061.2017.106813
  18. Kovalenko, V., Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: 10.15587/1729-4061.2017.95699
  19. Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: 10.15587/1729-4061.2017.108839
  20. Kotok, V., Kovalenko, V. (2017). The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 28–34. doi: 10.15587/1729-4061.2017.97371
  21. Vidotti, M., Torresi, R., Torresi, S. I. C. de. (2010). Eletrodos modificados por hidróxido de níquel: um estudo de revisão sobre suas propriedades estruturais e eletroquímicas visando suas aplicações em eletrocatálise, eletrocromismo e baterias secundárias. Química Nova, 33 (10), 2176–2186. doi: 10.1590/s0100-40422010001000030
  22. Kovalenko, V., Kotok, V. (2017). Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 17–22. doi: 10.15587/1729-4061.2017.110390
  23. Hall, D. S., Lockwood, D. J., Poirier, S., Bock, C., MacDougall, B. R. (2012). Raman and Infrared Spectroscopy of α and β Phases of Thin Nickel Hydroxide Films Electrochemically Formed on Nickel. The Journal of Physical Chemistry A, 116 (25), 6771–6784. doi: 10.1021/jp303546r
  24. Hermet, P., Gourrier, L., Bantignies, J.-L., Ravot, D., Michel, T., Deabate, S. et. al. (2011). Dielectric, magnetic, and phonon properties of nickel hydroxide. Physical Review B, 84 (23). doi: 10.1103/physrevb.84.235211
  25. Gourrier, L., Deabate, S., Michel, T., Paillet, M., Hermet, P., Bantignies, J.-L., Henn, F. (2011). Characterization of Unusually Large “Pseudo-Single Crystal” of β-Nickel Hydroxide. The Journal of Physical Chemistry C, 115 (30), 15067–15074. doi: 10.1021/jp203222t
  26. Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2016). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: 10.1007/s10008-016-3405-2
  27. Miao, C., Zhu, Y., Zhao, T., Jian, X., Li, W. (2015). Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide by codoping with Ca2+ and PO4 3−. Ionics, 21 (12), 3201–3208. doi: 10.1007/s11581-015-1507-y
  28. Li, Y., Yao, J., Zhu, Y., Zou, Z., Wang, H. (2012). Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide. Journal of Power Sources, 203, 177–183. doi: 10.1016/j.jpowsour.2011.11.081
  29. Kovalenko, V., Kotok, V. (2018). Comparative investigation of electrochemically synthesized (α+β) layered nickel hydroxide with mixture of α-Ni(OH)2 and β-Ni(OH)2. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 16–22. doi: 10.15587/1729-4061.2018.125886
  30. Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: 10.1007/s11029-014-9408-0
  31. Vlasova, E., Kovalenko, V., Kotok, V., Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5 (5 (83)), 33–39. doi: 10.15587/1729-4061.2016.79559
  32. Kotok, V., Kovalenko, V. (2017). Electrochromism of Ni(OH)2 films obtained by cathode template method with addition of Al, Zn, Co ions. Eastern-European Journal of Enterprise Technologies, 3 (12 (87)), 38–43. doi: 10.15587/1729-4061.2017.103010
  33. Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V., Solovov, V. A., Deabate, S., Mehdi, A. et. al. (2017). Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977.
  34. Abbas, S. A., Iqbal, M. I., Kim, S.-H., Abbas Khan, H., Jung, K.-D. (2018). Facile synthesis of alfa-nickel hydroxide by an ultrasound-assisted method and its application in energy storage devices. Applied Surface Science. doi: 10.1016/j.apsusc.2018.03.036
  35. Ertaş, F. S., Kaş, R., Ünal, U., Birer, Ö. (2013). Sonochemical synthesis and electrochemical characterization of α-nickel hydroxide: precursor effects. Journal of Solid State Electrochemistry, 17 (5), 1455–1462. doi: 10.1007/s10008-013-2017-3
  36. Song, Q. S., Li, Y. Y., Chan, S. L. I. (2005). Physical and electrochemical characteristics of nanostructured nickel hydroxide powder. Journal of Applied Electrochemistry, 35 (2), 157–162. doi: 10.1007/s10800-004-6301-x
  37. Duraisamy, N., Numan, A., Fatin, S. O., Ramesh, K., Ramesh, S. (2016). Facile sonochemical synthesis of nanostructured NiO with different particle sizes and its electrochemical properties for supercapacitor application. Journal of Colloid and Interface Science, 471, 136–144. doi: 10.1016/j.jcis.2016.03.013
  38. Ertaş, F. S., Saraç, F. E., Ünal, U., Birer, Ö. (2015). Ultrasound-assisted hexamethylenetetramine decomposition for the synthesis of alpha nickel hydroxide intercalated with different anions. Journal of Solid State Electrochemistry, 19 (10), 3067–3077. doi: 10.1007/s10008-015-2929-1
  39. Numan, A., Duraisamy, N., Saiha Omar, F., Gopi, D., Ramesh, K., Ramesh, S. (2017). Sonochemical synthesis of nanostructured nickel hydroxide as an electrode material for improved electrochemical energy storage application. Progress in Natural Science: Materials International, 27 (4), 416–423. doi: 10.1016/j.pnsc.2017.06.003
  40. Cabanas-Polo, S., Suslick, K. S., Sanchez-Herencia, A. J. (2011). Effect of reaction conditions on size and morphology of ultrasonically prepared Ni(OH)2 powders. Ultrasonics Sonochemistry, 18 (4), 901–906. doi: 10.1016/j.ultsonch.2010.11.017
  41. Alammar, T., Shekhah, O., Wohlgemuth, J., Mudring, A.-V. (2012). Ultrasound-assisted synthesis of mesoporous β-Ni(OH)2 and NiO nano-sheets using ionic liquids. Journal of Materials Chemistry, 22 (35), 18252. doi: 10.1039/c2jm32849f
  42. Vasserman, I. N. (1980). Khimicheskoe osazdenie is rastvorov [Chemical precipitation from solutions]. Leningrad: Khimiya, 208.
  43. Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. (2014). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2174), 20140792–20140792. doi: 10.1098/rspa.2014.0792
  44. Kotok, V., Kovalenko, V., Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 12–19. doi: 10.15587/1729-4061.2017.109770
  45. Ecsedi, Z., Lazău, I., Păcurariu, C. (2007). Synthesis of mesoporous alumina using polyvinyl alcohol template as porosity control additive. Processing and Application of Ceramics, 1 (1-2), 5–9. doi: 10.2298/pac0702005e
  46. Pon-On, W., Meejoo, S., Tang, I.-M. (2008). Formation of hydroxyapatite crystallites using organic template of polyvinyl alcohol (PVA) and sodium dodecyl sulfate (SDS). Materials Chemistry and Physics, 112 (2), 453–460. doi: 10.1016/j.matchemphys.2008.05.082
  47. Miyake, K., Hirota, Y., Uchida, Y., Nishiyama, N. (2016). Synthesis of mesoporous MFI zeolite using PVA as a secondary template. Journal of Porous Materials, 23 (5), 1395–1399. doi: 10.1007/s10934-016-0199-7
  48. Kotok, V., Kovalenko, V. (2018). A study of multilayered electrochromic platings based on nickel and cobalt hydroxides. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 29–35. doi: 10.15587/1729-4061.2018.121679
  49. Parkhomchuk, E. V., Sashkina, K. A., Rudina, N. A., Kulikovskaya, N. A., Parmon, V. N. (2013). Template synthesis of 3D-structured macroporous oxides and hierarchical zeolites. Catalysis in Industry, 5 (1), 80–89. doi: 10.1134/s2070050412040150
  50. Kotok, V., Kovalenko, V. (2017). Optimization of nickel hydroxide electrode of the hybrid supercapacitor. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 4–9. doi: 10.15587/1729-4061.2017.90810

Downloads

Published

2018-06-13

How to Cite

Kovalenko, V., & Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3(12 (93), 32–39. https://doi.org/10.15587/1729-4061.2018.133548

Issue

Section

Materials Science