Determinig the parameters of the acoustic system for the primary treatment of wool

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.133710

Keywords:

primary treatment of wool, parameters of acoustic oscillations, coefficient of reflection of acoustic wave

Abstract

We have studied the process of primary treatment of wool in order to remove soil and manure contaminants, vegetable impurities, fat, and sweat. The primary treatment of wool performs a key role in retaining the natural properties of wool fiber and makes it possible to obtain high-quality raw materials for textile industry. It was found in the course of research that the intensification of the processes of primary treatment of wool requires the application of acoustic oscillations. Acoustic oscillations act on the system wool‒washing solution. The system wool‒washing solution is in between grating conveyors. Conveyors form a grating of metal rods. To determine parameters of the acoustic system for the primary treatment of wool, we performed an analysis of three problems. The problems related to: the scattering of acoustic oscillations on a metal grating, on a layer of wool-washing solution, and combining the solutions to two problems into one using a scattering matrix method. Our study allowed us to define parameters for the system of primary treatment of wool with acoustic oscillations, which makes it possible to achieve greater effectiveness in cleaning wool compared to existing analogues. It was established in the course of theoretical and experimental studies that the washing of wool should be carried out at the following parameters of acoustic oscillations in a washing solution: frequency of the sound field is 1.1±0.1 kHz; the sound intensity is 1.1±0.01 W/cm2. In this case, the thickness of a layer of wool at the conveyor is 0.06±0.01 m; the motion speed of conveyor is 0.1 m/s; the number of converters per bath is 8±1 pieces.

The application of optimal parameters in process of continuous washing of wool fibers in an aqueous solution makes it possible to obtain the residual fat on wool within 1.5 % of the amount of fat in the unwashed wool while GOST of Ukraine permits up to 2 %.

Author Biographies

Lyudmyla Mykhailova, State Agrarian and Engineering University in Podilya Shevchenka str., 13, Kamianets-Podilskyi, Ukraine, 32300

PhD, Senior Lecturer

Department of Power Engineering and Electrical Engineering Systems in Agroindustrial Complex

Oleksandr Kozak, State Agrarian and Engineering University in Podilya Shevchenka str., 13, Kamianets-Podilskyi, Ukraine, 32300

PhD, Senior Lecturer

Department of Power Engineering and Electrical Engineering Systems in Agroindustrial Complex

Natalia Kosulina, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskih str., 44, Kharkiv, Ukraine, 61012

Doctor of Technical Sciences, Professor, Head of Department

Department of Technotrance and Theoretical Electrical Engineering

Pavel Potapski, State Agrarian and Engineering University in Podilya Shevchenka str., 13, Kamianets-Podilskyi, Ukraine, 32300

PhD, Senior Lecturer

Department of Power Engineering and Electrical Engineering Systems in Agroindustrial Complex

Aleksandr Cherenkov, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskih str., 44, Kharkiv, Ukraine, 61012

Doctor of Technical Sciences, Professor

Department of Technotrance and Theoretical Electrical Engineering

References

  1. Rogachev, N., Vasil'eva, L., Timoshenko, N. (2000). Sherst'. Pervichnaya obrabotka i rynok. Moscow: VNIIMP RASKHN, 600.
  2. Cherenkov, A. D., Kosulina, N. G. (2016). Ploskiy gidrodinamicheskiy izluchatel' v ustroystvah moyki shersti. Enerhetyka ta kompiuterno-intehrovani tekhnolohiyi v APK, 1, 62–66.
  3. Moroz, O., Cherenkov, A. (2004). Perspektyvy vykorystannia ultrazvukovykh kolyvan dlia pervynnoi obrobky vovny. Visnyk Kharkivskoho derzhavnoho tekhnichnoho universytetu silskoho hospodarstva “Problemy enerhoza-bezpechennia ta enerhozberezhennia v APK Ukrainy”, 27, 255–260.
  4. Tang, B., Wang, J., Xu, S., Afrin, T., Tao, J., Xu, W. et. al. (2012). Function improvement of wool fabric based on surface assembly of silica and silver nanoparticles. Chemical Engineering Journal, 185-186, 366–373. doi: 10.1016/j.cej.2012.01.082
  5. Li, Q., Hurren, C. J., Wang, X. (2017). Ultrasonic assisted industrial wool scouring. Procedia Engineering, 200, 39–44. doi: 10.1016/j.proeng.2017.07.007
  6. Peila, R., Actis Grande, G., Giansetti, M., Rehman, S., Sicardi, S., Rovero, G. (2015). Washing off intensification of cotton and wool fabrics by ultrasounds. Ultrasonics Sonochemistry, 23, 324–332. doi: 10.1016/j.ultsonch.2014.09.004
  7. Bahtiyari, M. İ., Duran, K. (2013). A study on the usability of ultrasound in scouring of raw wool. Journal of Cleaner Production, 41, 283–290. doi: 10.1016/j.jclepro.2012.09.009
  8. Ceria, A., Rombaldoni, F., Rovero, G., Mazzuchetti, G., Sicardi, S. (2010). The effect of an innovative atmospheric plasma jet treatment on physical and mechanical properties of wool fabrics. Journal of Materials Processing Technology, 210 (5), 720–726. doi: 10.1016/j.jmatprotec.2009.12.006
  9. Zhang, R., Wang, A. (2015). Modification of wool by air plasma and enzymes as a cleaner and environmentally friendly process. Journal of Cleaner Production, 87, 961–965. doi: 10.1016/j.jclepro.2014.10.004
  10. Zhang, Y., Pang, G., Zhao, Y., Wang, X., Bu, F., Zhao, X. (2016). Pulsed electrohydraulic discharge for wool fiber cleaning. Journal of Cleaner Production, 112, 1033–1039. doi: 10.1016/j.jclepro.2015.08.023
  11. Actis Grande, G., Giansetti, M., Pezzin, A., Rovero, G., Sicardi, S. (2017). Use of the ultrasonic cavitation in wool dyeing process: Effect of the dye-bath temperature. Ultrasonics Sonochemistry, 35, 276–284. doi: 10.1016/j.ultsonch.2016.10.003
  12. Carran, R. S., Ghosh, A., Dyer, J. M. (2013). The effects of zeolite molecular sieve based surface treatments on the properties of wool fabrics. Applied Surface Science, 287, 467–472. doi: 10.1016/j.apsusc.2013.09.181
  13. Pan, Y., Hurren, C. J., Li, Q. (2018). Effect of sonochemical scouring on the surface morphologies, mechanical properties, and dyeing abilities of wool fibres. Ultrasonics Sonochemistry, 41, 227–233. doi: 10.1016/j.ultsonch.2017.09.045
  14. McNeil, S. J., McCall, R. A. (2011). Ultrasound for wool dyeing and finishing. Ultrasonics Sonochemistry, 18 (1), 401–406. doi: 10.1016/j.ultsonch.2010.07.007
  15. Ferrero, F., Periolatto, M. (2012). Ultrasound for low temperature dyeing of wool with acid dye. Ultrasonics Sonochemistry, 19 (3), 601–606. doi: 10.1016/j.ultsonch.2011.10.006
  16. Skuchik, E. (1976). Osnovy akustiki. Moscow: Mir, 520.
  17. Tihonov, A., Samarskiy, A. (1987). Uravneniya matematicheskoy fiziki. Moscow: Nauka, 735.
  18. Shestopalov, V., Litvinenko, L., Masalov, S. (1973). Difrakciya voln na reshetkah. Kharkiv, 288.
  19. Vinarskiy, M. S., Lur'e, M. V. (1975). Planirovanie eksperimenta v tekhnologicheskih issledovaniyah. Kyiv: Tekhnikа, 168.
  20. Spiridonov, A. A. (1981). Planirovanie eksperimenta pri issledovanii tekhnologicheskih processov. Moscow: Mashinostroenie, 184.
  21. GOST 5778-2000. Sherst' sortirovannaya mytaya. Upakovka, markirovka, transportirovanie i hranenie. Vzamen GOST-5778-73 (1995). Minsk: Mezhgos. sovet po standartiz., metrologii i sertif., 8.

Downloads

Published

2018-06-14

How to Cite

Mykhailova, L., Kozak, O., Kosulina, N., Potapski, P., & Cherenkov, A. (2018). Determinig the parameters of the acoustic system for the primary treatment of wool. Eastern-European Journal of Enterprise Technologies, 3(5 (93), 61–68. https://doi.org/10.15587/1729-4061.2018.133710

Issue

Section

Applied physics