Development of electric­arc pseudoalloy coatings for the strengthening of copper walls of molds

Authors

  • Yuri Borisov E. O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine Kazymyra Malevycha str., 11, Kyiv, Ukraine, 03150, Ukraine https://orcid.org/0000-0002-6019-8464
  • Nataliia Vigilianska E. O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine Kazymyra Malevycha str., 11, Kyiv, Ukraine, 03150, Ukraine https://orcid.org/0000-0001-8576-2095
  • Ivan Demianov E. O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine Kazymyra Malevycha str., 11, Kyiv, Ukraine, 03150, Ukraine https://orcid.org/0000-0003-4536-9971
  • Oleksandr Grishchenko E. O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine Kazymyra Malevycha str., 11, Kyiv, Ukraine, 03150, Ukraine https://orcid.org/0000-0003-2640-8656

DOI:

https://doi.org/10.15587/1729-4061.2018.134337

Keywords:

mold wall, electric-arc spraying, pseudoalloy coating, heat flux

Abstract

On the basis of the requirements for protective coatings of molds, the materials of pseudoalloys were determined for applying coatings from two wires. One of the wires is copper, which provides maintaining a sufficient thermal conductivity of the layer, and the second one consists of a material, which provides wear resistance of a coating. As the second wire, the wires NiCr, Mo, Ti and a flux-cored wire were used, consisting of a steel sheath and a filler – FeB powder. Based on the calculation data on the thermal conductivity of coatings, taking into account the coefficients of heat transfer, the estimation of the influence of these coatings on the thermal processes in the mold (temperature of the wall surface, intensity of heat removal from the wall) was performed. Applying electric-arc spraying, the pseudoalloy coatings with a uniform distribution of components were produced, one of which is copper with a hardness of 1,320–1,460 MPa, and the second one is the strengthening component NiCr, with a hardness of 2,440 MPa; Mo, with a hardness of 5,350 MPa; Ti, with a hardness of 7,540 MPa; FeB, with a hardness of 7,050 MPa.

As a result of measurements of the coefficient of thermal expansion of coatings, it was found that the coating Cu-NiCr is the closest to the coefficient of thermal expansion of copper. Then it is followed by Cu-FCW (FeB), Cu-Ti and Cu-Mo. The abrasive wear resistance of pseudoalloy coatings at a room temperature exceeds pure copper 1.4–2.3 times. The tests of pseudoalloy coatings for resistance to wear during heating to 350 °C showed that the wear resistance of Cu-NiCr and Cu-FCW (FeB) coatings exceeds the resistance of pure copper 4.5 and 22 times, respectively. The hot hardness of the coating Cu-NiCr in the range of 20–400 °C exceeds the hardness of pure copper 3 times.

Author Biographies

Yuri Borisov, E. O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine Kazymyra Malevycha str., 11, Kyiv, Ukraine, 03150

Doctor of Technical Sciences, Professor, Head of Department

Department of protective coatings

Nataliia Vigilianska, E. O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine Kazymyra Malevycha str., 11, Kyiv, Ukraine, 03150

Junior Researcher

Department of protective coatings

Ivan Demianov, E. O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine Kazymyra Malevycha str., 11, Kyiv, Ukraine, 03150

Researcher

Department of protective coatings

Oleksandr Grishchenko, E. O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine Kazymyra Malevycha str., 11, Kyiv, Ukraine, 03150

Junior Researcher

Department of protective coatings

References

  1. Evteev, D. P., Kolybalov, I. N. (1984). Nepreryvnoe lite stali [Continouos casting of steel]. Moscow: Metallurgiya, 200.
  2. Niskovskih, V. M., Kalinskiy, S. E., Berenov, A. D. (1991). Mashiny nepreryvnogo litya sljabovyh zagotovok [Continuous casting machine for slab]. Moscow: Metallurgiya, 271.
  3. Sahai, Y., Emi, T. (2007). Tundish Technology for Clean Steel Production. Singapore: World Scientific Publishing Company, 316. doi: 10.1142/9789812790767
  4. Brower, J. K., Rapp, K. D., Powers, M. J. (2006). Advanced alternative coatings for mould copper liners. Iron & Steel Technology, 3 (7), 32–44.
  5. Barella, S., Gruttadauria, A., Mapelli, C., Mombelli, D. (2014). Investigation of failure and damages on a continuous casting copper mould. Engineering Failure Analysis, 36, 432–438. doi: 10.1016/j.engfailanal.2013.11.004
  6. Coating technology to increase life time of slab mold plate (2013). MPT International, 5, 66–67.
  7. Carl Schreiber GmbH. Molds for Continuous Casting (2014). Available at: http://www.csnmetals.de/download/molds10-2014.pdf
  8. Vuitov, V., Sivrikova, S. (2009). New technology for reconditioning the copper panels of continuous-caster molds in Russia. Metallurgist, 53 (1-2), 69–72. doi: 10.1007/s11015-009-9140-5
  9. Ozturk, S., Arikan, M. M., Kacar, Y. (2013). Effects of Nickel Coating of Mold Plates on Star Crack Defects. Metallurgical and Materials Transactions B, 44 (3), 706–710. doi: 10.1007/s11663-013-9821-0
  10. Pandey, J. C., Raj, M., Mishra, R., Tripathy, V. K., Bandyopadhyay, N. (2007). Failure of Nickel Coating on a Copper Mold of a Slab Caster. Journal of Failure Analysis and Prevention, 8 (1), 3–11. doi: 10.1007/s11668-007-9096-3
  11. SMS group. Mold Copper Coatings. Protect Coppers, Improve Strand Quality. Available at: http://sms-group.us/files/SMS%20group%20-%20Mold%20Copper%20Coatings.pdf
  12. Peng, X., Zhou, J., Qin, Y. (2005). Improvement of the temperature distribution in continuous casting moulds through the rearrangement of the cooling water slots. Journal of Materials Processing Technology, 167 (2-3), 508–514. doi: 10.1016/j.jmatprotec.2005.05.023
  13. AMC Advanced Mould Coatings. KME Germany GmbH & Co. Available at: https://www.kme.com/fileadmin/DOWNLOADCENTER/SPECIAL%20DIVISION/1%20Melting%20%26%20Casting/3%20Products/2%20Mould%20Plates/AMC_Mould_Coatings_2018.pdf
  14. Masato, T. (2009). Kristallizatory ustanovok nepreryvnoj razlivki stali ot «Mishima Kosan». Elektroplakirovanie i termicheskoe napylenie [Moulds of continuous casting of steel from "Mishima Kosan". Electroplating and thermal spraying. Novye napravleniya v razvitii oborudovaniya nepreryvnoy razlivki metallov: materialy mezhdunarodnogo nauchno-prakticheskogo seminara. Ekaterinburg: GOU VPO UGTU-UPI, 4–20.
  15. Vopneruk, A. A., Iskhakov, R. F., Kotelnikov, A. B., Yamasaki, K., Okada, K., Kirichkov, A. A. et. al. (2013). Opyt vnedreniya peredovyh yaponskih razrabotok nepreryvnoy razlivki stali v OAO «EVRAZ NTMK» [The Experience of Implementation of Advanced Japanese Achievements in Continuous Steel Casting in the OJSC "EVRAZ NTMK"]. Stal', 9, 37–41.
  16. Kushnarev, A. V., Kirichkov, A. A., Vopneruk, A. A., Kotel'nikov, A. B., Korobov, Yu. S., Makarov, A. V., Shifrin, I. N. (2017). Fiziko-mekhanicheskie harakteristiki gazotermicheskih pokrytiy stenok kristallizatora mashin nepreryvnogo lit'ya zagotovok [Physico-mechanical characteristics of thermal sprayed coatings for the mold walls of continuous casting machines]. Svarka i diagnostika, 5, 61–64.
  17. Unique coating technology for superior mould wear resistance and product quality (2017). MPT International, 2, 38–41.
  18. Radyuk, A. G., Gorbatyuk, S. M., Titlyanov, A. E., Gerasimova, A. A. (2012). Primenenie gazotermicheskih pokrytiy dlya remonta tolstostennyh slyabovyh kristallizatorov MNLZ [Application of thermal sprayed coatings for the repairation of thick-wall slab molds of CCM]. Metallurgicheskie processy i oborudovanie, 1, 32–35.
  19. Radyuk, A. G., Gorbatyuk, S. M., Gerasimova, A. A. (2011). Use of electric-arc metallization to recondition the working surfaces of the narrow walls of thick-walled slab molds. Metallurgist, 55 (5-6), 419–423. doi: 10.1007/s11015-011-9446-y
  20. Gerasimova, A. A., Radyuk, A. G., Titlyanov, A. E. (2016). Wear-resistant aluminum and chromonickel coatings at the narrow mold walls in continuous-casting machines. Steel in Translation, 46 (7), 458–462. doi: 10.3103/s0967091216070068
  21. Gerasimova, A. A., Radyuk, A. G., Titlyanov, A. E. (2015). Creation of a diffusional aluminum layer on the narrow walls of continuous-casting molds. Steel in Translation, 45 (3), 185–187. doi: 10.3103/s0967091215030079
  22. Smirnov, A. N., Cuprun, A. Yu., Shtepan, E. V. et. al. (2011). Analiz teplovoy raboty kristallizatora slyabovoy MNLZ [Analysis of the thermal performance of the mold slab CCM]. Stal', 5, 19–21.
  23. Dul'nev, G. N., Zarichnyak, Yu. P. (1974). Teploprovodnost' smesey i kompozicionnyh materialov [Thermal conductivity of mixtures and composite materials]. Leningrad: Energiya, 264.

Downloads

Published

2018-06-20

How to Cite

Borisov, Y., Vigilianska, N., Demianov, I., & Grishchenko, O. (2018). Development of electric­arc pseudoalloy coatings for the strengthening of copper walls of molds. Eastern-European Journal of Enterprise Technologies, 3(12 (93), 6–14. https://doi.org/10.15587/1729-4061.2018.134337

Issue

Section

Materials Science