Determining the maximally permissible values for the indicators of insulation of sealed entrance bushings with a voltage of 110 kV using the method of minimal risk

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.142185

Keywords:

high voltage entrance bushing, insulation indicators, minimal risk, probabilities of erroneous and correct decisions, Weibull distribution, likelihood ratios

Abstract

A method for determining the maximally permissible values for the indicators of insulation of high-voltage oilfilled entrance bushings that ensure the minimal risk value has been proposed. The proposed method differs in that the maximally permissible values for indicators are determined by minimizing the function of average risk, using the Newton’s method, taking into consideration the actual operating conditions of equipment, which makes it possible to improve the operational reliability of entrance bushings.

We have derived an expression to determine the average risk with respect to the distribution law of indicators for the insulation of high-voltage entrance bushings (by Weibull), the minimization of which makes it possible to determine the maximally permissible values for the indicators, taking into consideration the duration of their operation, the values of load currents, the grade of a transformer oil, and other factors.

A comparative analysis was performed for risk values, which are accompanied by applying the maximally permissible values for indicators that are regulated in Ukraine, with the maximally permissible values for indicators, which were obtained by using different methods. The analysis revealed that the minimal risk value is ensured by the maximally permissible values for indicators, which are obtained by applying the method of minimal risk, taking into consideration the operating conditions for entrance bushings. We have performed an analysis of impact of the values for probabilities of the proper-functioning and faulty state of entrance bushings, the cost of incorrect decisions, as well as the value for a scale parameter and a shape parameter in the Weibull distribution, on the maximally permissible values for the indicators of insulation of high-voltage oil-filled entrance bushings in an airtight structure. It was established that an increase in the probability of a defect and its conditional cost, as well as prolonging the operation duration of entrance bushings and their loading, leads to a decrease in the maximally permissible values for the indicators. It has been proven that the maximally permissible values for the indicators of insulation of high-voltage entrance bushings, which ensure the minimal economic loss, are not constant. In order to practically implement the method of minimal risk during operation, it has been proposed to apply the likelihood ratios, which make it possible to diagnose the state of high-voltage entrance bushings at a minimal risk, but without determining the maximally permissible values for the indicators.

Author Biographies

Оleg Shutenko, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of transmission of electric energy

Alexandra Zagaynova, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Assistant

Department of transmission of electric energy

Galina Serdyukova, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of transmission of electric energy

References

  1. Alekseev, B. A. (2002). Kontrol' sostoyaniya (diagnostika) krupnyh silovyh transformatorov. Moscow: «Izdatel'stvo NC ENAS», 216.
  2. Anglhuber, M., Velásquez, C. J. L. (2017). Dispersing the clouds – gain clear insight into your bushings using advanced diagnostics method. Transformers Magazine, 126–132.
  3. Andrienko, P. D., Sahno, A. A., Konogray, S. P., Spica, A. G.,. Skrupskaya, L. S. (2014). Osobennosti monitoringa tekhnicheskogo sostoyaniya osnovnoy izolyacii vysokovol'tnyh vvodov i transformatorov toka. Elektrotekhnika ta elektroenerhetyka, 1, 43–48.
  4. Rubanenko, O. Ye., Humeniuk, O. I. (2011). Vysokovoltni vvody. Konstruktsiya, ekspluatatsiya, diahnostyka i remont. Vinnytsia: VNTU, 183.
  5. Dolya, O. E. (2013). Povyshenie nadezhnosti ekspluatacii vvodov. Materialy 10-oy ezhegodnoy konferencii «Metody i sredstva kontrolya izolyacii vysokovol'tnogo oborudovaniya». Perm': OOO «Dimrus».
  6. Kassihin, S. D., Sipilkin, K. G., Slavinskiy, A. Z., Ustinov, V. N., Pintal', Yu. S., Vereshchagin, M. B. (2010). Ocenka effektivnosti i celesoobraznosti diagnostiki vysokovol'tnyh vvodov na osnove opyta ekspluatacii. Transformatory: ekspluataciya, diagnostirovanie, remont, prodlenie sroka sluzhby: materialy Mezhdunar. nauch.-prakt. konf., posvyashch. 70-letiyu Viktora Sokolova. Ekaterinburg: Izdatel'skiy dom «Avtograf».
  7. Anikeeva, M. A., Arbuzov, R. S., Zhivodernikov, S. V., Lazareva, E. A., Ovsyannikov, A. G., Panov, M. A. (2009). Diagnosticheskie priznaki dlya otbrakovki vvodov vysokogo napryazheniya s bumazhno-maslyanoy izolyaciey. ELEKTRO, 1, 22–25.
  8. Normy vyprobuvannia elektroobladnannia: SOU-N EE 20.302:2007 – Ofits. vyd., prykaz Minpalyvenerho 2007-01-15 h. No. 13 (2007). Kyiv: OEP «HRYFRE»: Minpalyvenerho palyva ta enerhetyky Ukrainy, 262.
  9. Shutenko, O., Zagaynova, A., Serdyukova, G. (2018). Analysis of distribution laws of insulation indicators of high-voltage oil-fillled bushings of hermetic and non-hermetic execution. Technology audit and production reserves, 4 (1 (42)), 30–39. doi: https://doi.org/10.15587/2312-8372.2018.140873
  10. Zahainova, O. A. (2015). Analiz vplyvu riznomanitnykh chynnykiv na intensyvnist starinnia izoliatsiyi kondensatornoho typu vysokovoltnykh vvodiv. Energosberezhenie. Energetika. Energoaudit, 10 (141), 17–25.
  11. Santos, E., Schuette, T. (2016). Breakdown Mechanism of Bushings and Life-Cycle Oriented Maintenance Strategies. TechCon Asia-Pacific, 1–27.
  12. Gubanski, S. M. et. al. (2010). Dielectric Response Diagnoses For Transformer Windings. CIGRE report 414.
  13. Felea, I., Secui, D., Oltean, M. (2011). The impact analyze of electric stress level in content of insulating oil gases in power transforrmers. Journal of sustainable energy, 2 (4).
  14. Lin, M.-J. (2015). Gaussian distribution Diagnoses in Transformer’s Insulating Oil. Joint International Mechanical, Electronic and Information Technology Conference (JIMET 2015), 824–830.
  15. Mirowski, P., LeCun, Y. (2012). Statistical Machine Learning and Dissolved Gas Analysis: A Review. IEEE Transactions on Power Delivery, 27 (4), 1791–1799. doi: https://doi.org/10.1109/tpwrd.2012.2197868
  16. Besprozvannyh, A. V., Moskvitin, E. S. (2013). Kriterii ocenki stepeni stareniya silovyh kabeley s bumazhno-propitannoy izolyaciey. Elektrotekhnika i Elektromekhanika, 4, 32–36.
  17. Davidenko, I. V. (2009). Opredelenie dopustimyh znacheniy kontroliruemyh parametrov maslonapolnennogo oborudovaniya na osnove massiva nablyudaemyh dannyh. Elektrichestvo, 6, 10–21.
  18. Davidenko, I. V. (2006). Issledovanie pokazateley, opisyvayushchih rabochee sostoyanie maslonapolnennyh vvodov, metodami matematicheskoy statistiki. Izvestiya vysshih uchebnyh zavedeniy, 15, 31–33.
  19. IEC Publication 60599. Interpretation of the analysis of gases in transformer and other oil med electrical equipment in &, Geneva, Switzerland, 1999.
  20. Zaharov, A. V. (2001). Obnaruzhenie defektov silovyh maslonapolnennyh transformatorov kak procedura proverki statisticheskih gipotez. Novoe v rossiyskoy energetike, 2, 19–28.
  21. Shutenko, O. V. (2017). Opredelenie znacheniy granichnyh koncentraciy rastvorennyh v masle gazov metodom minimal'nogo riska. Elektrichestvo, 8, 50–60. doi: http://dx.doi.org/10.24160/0013-5380-2017-8-50-60
  22. Oleg, S. (2017). Determine the boundary value of the concentration of gases dissolved in oil of method minimum risk. 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). doi: https://doi.org/10.1109/ukrcon.2017.8100533
  23. Birger, I. A. (1978). Tekhnicheskaya diagnostika. Moscow: Mashinostroenie, 240.
  24. Chernoruckiy, I. G. (2005). Metody prinyatiya resheniy. Sankt-Peterburg: BHV-Peterburg, 416.

Downloads

Published

2018-10-24

How to Cite

Shutenko О., Zagaynova, A., & Serdyukova, G. (2018). Determining the maximally permissible values for the indicators of insulation of sealed entrance bushings with a voltage of 110 kV using the method of minimal risk. Eastern-European Journal of Enterprise Technologies, 5(8 (95), 6–15. https://doi.org/10.15587/1729-4061.2018.142185

Issue

Section

Energy-saving technologies and equipment