Bitwise method for the binary-coded operands conversion based on mathematical logic

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.142975

Keywords:

components of computer-integrated systems, code conversion, binary-coded operands, bitwise tuple-tabular logical-reverse method

Abstract

This paper addresses the development and examination of the unconventional highly-efficient bitwise tuple-tabular logical-reverse method, underlying the construction of precision models of computational information converters, represented in the form of unipolar binary-coded operands with a positionally-ordered notation.

Modern models of converters, built using traditional methods, are typically not computationally loaded and are the aligning components that ensure the required form of information representation both at the input and output of the computing device. At the same time, they have a number of constraints that require hardware support, which leads to an increase in the weight and dimensions, compromises reliability and energy-time indicators, and increases the cost.

Therefore, development of the new unconventional method that converts various types of positionally-ordered binary-coded operands into certain values for a code combination and vice versa, using the same tabular compliance data (previously calculated) is a relevant task.

The method implies the construction of compliance tables based on formal logic; determining the values for corrective constants using the ХОR operation; the elimination of information redundancy owing to the tuple decomposition and the synthesis of components for the model of a computational converter of information. The totality of procedures ensures the versatility, high performance speed and reliability, reduces energy consumption while maintaining the precision of results.

Verification of the proposed logical-mathematical model for constructing an effective method that converts various types of binary-coded operands has been confirmed by calculating the corrective constants given in tables, as well as during an experiment. The experiment was conducted on the designed physical model with a single numeric memory unit that converts a binary code into the Gray code and vice versa.

The proposed original multifunctional computational converters make it possible, at lower energy-time and hardware costs, to solve local control tasks in the computer-integrated systems for special purposes in order to manage high-speed technological processes or handle autonomous physical objects

Author Biographies

Andriy Lukashenko, E. O. Paton Electric Welding Kazymyra Malevycha str., 11, Kyiv, Ukraine, 03680

PhD, Senior Researcher

Dmytro Harder, E. O. Paton Electric Welding Kazymyra Malevycha str., 11, Kyiv, Ukraine, 03680

Junior Researcher

Volodymyr Lukashenko, E. O. Paton Electric Welding Kazymyra Malevycha str., 11, Kyiv, Ukraine, 03680

PhD, Junior Researcher

Evgenyi Fedorov, Donetsk National Technical University Shybankova sq., 2, Pokrovsk, Ukraine, 85300

Doctor of Technical Sciences, Associate Professor, Head of Department

Department of Computer Sciences

Valentyna Lukashenko, Cherkasy State Technological University Shevchenka blvd., 460, Cherkasy, Ukraine, 18006

Doctor of Technical Sciences, Professor, Head of Department

Department of Robotics and Specialized Computer Systems

Tetyana Utkina, Cherkasy State Technological University Shevchenka blvd., 460, Cherkasy, Ukraine, 18006

PhD, Associate Professor

Department of Robotics and Specialized Computer Systems

Serhii Mitsenko, Cherkasy State Technological University Shevchenka blvd., 460, Cherkasy, Ukraine, 18006

PhD, Senior Lecturer

Department of Robotics and Specialized Computer Systems

Kostiantyn Rudakov, Cherkasy State Technological University Shevchenka blvd., 460, Cherkasy, Ukraine, 18006

PhD, Senior Lecturer

Department of Robotics and Specialized Computer Systems

References

  1. Nguyen, G. D. (2009). Fast CRCs. IEEE Transactions on Computers, 58 (10), 1321–1331. doi: https://doi.org/10.1109/tc.2009.83
  2. Ahmad, A., Hayat, L. (2011). Selection of Polynomials for Cyclic Redundancy Check for the use of High Speed Embedded – An Algorithmic Procedure. WSEAS Transactions on Computers, 10 (1), 16–20.
  3. PASCO. Available at: http://pasco.com/
  4. PHYWE – Cobra4 Wireless. Available at: https://www.phywe.com/en/cobra4-wireless-link.html
  5. L-CARD. Available at: http://www.lcard.ru
  6. Semerenko, V. P. (2015). Theory and practice of crc codes: new results based on automaton models. Eastern-European Journal of Enterprise Technologies, 4 (9 (76)), 38–48. doi: https://doi.org/10.15587/1729-4061.2015.47860
  7. Galuza, A. A., Kolenov, I. V., Belyaeva, A. I. (2013). Software and hardware platform for developing laboratory experiment automation systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (65)), 11–16. Available at: http://journals.uran.ua/eejet/article/view/18446/16193
  8. Sarwate, D. V. (1988). Computation of cyclic redundancy checks via table look-up. Communications of the ACM, 31 (8), 1008–1013. doi: https://doi.org/10.1145/63030.63037
  9. Semerenko, V. P. (2015). Estimation of the correcting capability of cyclic codes based on their automation models. Eastern-European Journal of Enterprise Technologies, 2 (9 (74)), 16–24. doi: https://doi.org/10.15587/1729-4061.2015.39947
  10. Krishna, K. V. (2013). An Optimization Technique for CRC Generation. International Journal of Computer Trends and Technology (IJCTT), 4 (9), 3260–3265.
  11. Baicheva, T. (2008). Determination of the Best CRC Codes with up to 10-Bit Redundancy. IEEE Transactions on Communications, 56 (8), 1214–1220. doi: https://doi.org/10.1109/tcomm.2008.070033
  12. Osinin, I. P., Knyaz'kov, V. S. (2014). Organizaciya parallel'no-konveyernogo SBIS-processora dlya pryamogo modulyarnogo preobrazovaniya chisel na osnove arifmetiki razryadnyh srezov. Izvestiya vysshih uchebnyh zavedeniy. Povolzhskiy region. Tekhnicheskie nauki, 3 (31), 5–13.
  13. Korneychuk, V. I., Tarasenko, V. P. (2003). Osnovy komp'yuternoy arifmetiki. Kyiv: Korniychuk, 176.
  14. Sergeev, A. M. (2006). Ob osobennostyah predstavleniya chisel pri znakorazryadnom kodirovanii i vychislitel'niy eksperiment s nimi. Informacionno-upravyayushchie sistemy, 3, 56–58.
  15. Riznyk, O., Balych, B., Yurchak, I. (2017). A synthesis of barker sequences is by means of numerical bundles. 2017 14th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM). doi: https://doi.org/10.1109/cadsm.2017.7916090
  16. Semerenko, V. (2016). The theory of parallel crc codes based on automaton models. Eastern-European Journal of Enterprise Technologies, 6 (9 (84)), 45–55. doi: https://doi.org/10.15587/1729-4061.2016.85603
  17. Semerenko, V. P. (2014). Paralelni tsyklichni kody. Visnyk VPI, 6, 65–72.
  18. Grymel, M., Furber, S. B. (2011). A Novel Programmable Parallel CRC Circuit. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 19 (10), 1898–1902. doi: https://doi.org/10.1109/tvlsi.2010.2058872
  19. Gross, T. R., Joppi, N. P., Hennessy, J. L. (2016). A Retrospective on “MIPS”: A Microprocessor Architecture. IEEE Computer Society, 36 (4), 73–76.
  20. Arhitektura CPU. Available at: https://old.computerra.ru/2005/609/233266/
  21. Baykov, V. D., Smolov, V. B. (1985). Specializirovannye processory: iteracionnye algoritmy i struktury. Moscow: Radio i svyaz', 288.
  22. Zubko, I. A., Lukashenko, V. A., Lukashenko, A. H., Lukashenko, V. M., Lukashenko, D. A. (2014). Pat. No. 107544 UA. Peretvoriuvach dviykovoho kodu v odnopoliarni oborotni kody i navpaky. No. a201401392; declareted: 12.02.2014; published: 12.01.2015, Bul. No. 1.
  23. Lukashenko, A. H., Lukashenko, D. A., Lukashenko, V. A., Lukashenko, V. M. (2011). Vysokonadiynyi bahatofunktsionalnyi obchysliuvach dlia spetsializovanykh lazernykh tekhnolohichnykh kompleksiv. Visnyk ChDTU, 1, 67–70.
  24. Lukashenko, V. A., Lukashenko, D. A., Zubko, I. A., Lukashenko, A. H., Lukashenko, V. M. (2015). Pat. No. 111459 UA. Bahatofunktsionalnyi tablychno-lohichnyi spivprotsesor. No. a201509351; declareted: 28.09.2015; published: 25.04.2016, Bul. No. 8.
  25. Lukashenko, A. H., Lukashenko, V. M., Lukashenko, D. A., Lukashenko, V. A., Zubko, I. A., Rudakov, K. S. (2015). Pat. No. 111808 UA. Spivprotsesor dlia obchyslennia znachen «priamykh» ta «obernenykh» funktsiy. No. a201510690; declareted: 02.11.2015; published: 10.06.2016, Bul. No. 11.
  26. Chychuzhko, M. V., Lukashenko, V. A., Lukashenko, D. A., Zubko, I. A., Lukashenko, V. M., Lukashenko, A. H. (2013). Pat. No. 89784 UA. Tablychno-lohichnyi peretvoriuvach kodiv. No. u201315042; declareted: 23.12.2013; published: 25.04.2014, Bul. No. 8.
  27. Lukashenko, V. A. (2016). Udoskonalenyi tablychno-alhorytmichnyi metod i modeli aparaturnoi realizatsiyi pretsyziynykh obchysliuvachiv spetsialnoho pryznachennia. Cherkasy: ChDTU, 20.

Downloads

Published

2018-09-24

How to Cite

Lukashenko, A., Harder, D., Lukashenko, V., Fedorov, E., Lukashenko, V., Utkina, T., Mitsenko, S., & Rudakov, K. (2018). Bitwise method for the binary-coded operands conversion based on mathematical logic. Eastern-European Journal of Enterprise Technologies, 5(4 (95), 6–14. https://doi.org/10.15587/1729-4061.2018.142975

Issue

Section

Mathematics and Cybernetics - applied aspects