Stabilization of physical-mechanical characteristics of honeycomb filler based on the adjustment of technological techniques for its fabrication

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.143674

Keywords:

honeycomb filler, adjustment of physical-mechanical characteristics, technology, cell opening angle, shape coefficient

Abstract

Objective preconditions for a more effective application of honeycomb structures in a number of industries are not only their advantages, already implemented and proven, but also resolving some of their problems. Regardless whether the honeycomb filler is made directly at an enterprise or purchased before forming a structure, it is subjected to various technological operations. In the course of these operations, some of its geometrical parameters undergo change, which is also related to its physical-mechanical characteristics.

The paper reports a study into ensuring the physical-mechanical characteristics of honeycomb fillers in the cases when its characteristics are beyond the limits of permissible values due to certain deviations in the geometry of honeycombs, which are to be purposefully adjusted in the process of fabrication of a given material. Based on the conditions for the strength of honeycomb filler in terms of the uniform detachment during stretching a honeycomb packet into a block, we have adjusted its physical-mechanical characteristics by ensuring the regulated range of the honeycomb’s cell stretching angle within the limit of the assigned region of its shape change coefficients.

We have obtained the regulated relationship between technological parameters and the honeycomb packet stretching angle and a shape change coefficient. The dependence makes it possible to determine the required range of technological parameters for implementing the physical-mechanical characteristics of honeycomb filler, required by the standard, with the predefined input geometrical parameters of its cell. We have analyzed all existing technological techniques for applying glue bands on a honeycomb filler’s material based on the relation between the step of applying the bands, the cell shape change coefficient, and the dimension of its side. The results obtained make it possible to improve the standard production processes for honeycomb fabrication, which in turn will increase the stability of physical-mechanical characteristics of the honeycomb filler, as well as the structures based on it.

Author Biographies

Andrii Kondratiev, National Aerospace University Kharkiv Aviation Institute Chkalova str., 17, Kharkiv, Ukraine, 61070

Doctor of Technical Sciences, Associate Professor, Head of Department

Department of Rocket Design and Engineering

Oksana Prontsevych, Yuzhnoye Design Office Krivorozhskaya str., 3, Dnipro, Ukraine, 49008

PhD, Leading Researcher

Department of physical and chemical methods of control of materials and elements of construction

References

  1. Panin, V. F., Gladkov, Yu. A. (1991). Konstrukcii s zapolnitelem. Moscow, 272.
  2. Astrom, B. T.; Virson, J. R. (Ed.) (1999). Sandwich Manufacturing: Past, Present and Future. Stockholm, 198.
  3. Dutton, S., Kelly, D., Baker, A. (2004). Composite Materials for Aircraft Structures. American Institute of Aeronautics and Astronautics Inc., Reston. Virginia, 599. doi: https://doi.org/10.2514/4.861680
  4. Slyvynskyi, V. I., Аlyamovskyi, А. I., Kondratjev, А. V., Kharchenko, М. Е. (2012). Carbon honeycomb plastic as light-weight and durable structural material. 63th International Astronautical Congress, 8, 6519–6529.
  5. Gaydachuk, A. V., Slivinskiy, V. I. (2000). O koncepcii kvalimetrii i upravleniya kachestvom proizvodstva sotovyh zapolniteley i konstrukciy. Voprosy proektirovaniya i proizvodstva konstrukciy letatel'nyh apparatov, 22 (5), 56–64.
  6. Wang, D., Bai, Z. (2015). Mechanical property of paper honeycomb structure under dynamic compression. Materials & Design, 77, 59–64. doi: https://doi.org/10.1016/j.matdes.2015.03.037
  7. Gaydachuk, A. V., Gaydachuk, V. E., Karpikova, O. A., Kirichenko, V. V., Kondrat'ev, A. V. (2015). Sotovye zapolniteli i panel'nye konstrukcii kosmicheskogo naznacheniya. Vol. 2. Sovershenstvovanie sotovyh zapolniteley i konstrukciy tekhnologicheskimi metodami. Kharkiv, 247.
  8. Endogur, A. I., Vaynberg, M. V., Ierusalimskiy, K. M. (1986). Sotovye konstrukcii. Vybor parametrov i proektirovanie. Moscow, 200.
  9. Wang, D.-M., Wang, Z.-W. (2008). Experimental investigation into the cushioning properties of honeycomb paperboard. Packaging Technology and Science, 21 (6), 309–316. doi: https://doi.org/10.1002/pts.808
  10. Krysin, V. N., Murzinov, V. A., Martynyuk, A. T. et. al. (1981). Intensifikaciya processa izgotovleniya sotovogo zapolnitelya iz alyuminievoy fol'gi. Aviacionnaya promyshlennost', 8, 9–12.
  11. Bersudskiy, V. E., Krysin, V. N., Lesnyh, S. M. (1975). Tekhnologiya izgotovleniya sotovyh aviacionnyh konstrukciy. Moscow, 296.
  12. Olsson, K.-A.; Vinson, J. R. (Eds.) (1999). Sandwich Constructions – Design and Experience. Stockholm, 214.
  13. Herrmann, A. S.; Virson, J. R. (Ed.) (1999). Design and Manufacture of Monolithic Sandwich Structures with Cellular Cares. Stockholm, 274.
  14. Charon, A. (2000). Hot-wet Environmental Degradation of Honeycomb Structure Representative of F/A-18: Discolouration of Cytec FM-300 Adhesive. Technical note, DSTO-TN-0263. Melbourne, 42.
  15. Ivanov, A. A., Kashin, S. M., Semenov, V. I. (2000). Novoe pokolenie sotovyh zapolniteley dlya aviacionno-kosmicheskoy tekhniki. Moscow, 436.
  16. Gaydachuk, A. V., Slivinsky, M. V., Golovanevsky, V. A. (2006). Technological Defects Classification System for Sandwiched Honeycomb Composite Materials Structures. Materials Forum, 30, 96–102.
  17. Zak, M. I. (1980). Issledovanie, razrabotka i avtomatizaciya processa rastyazhki sotovyh blokov v proizvodstve letatel'nyh apparatov. Moscow, 19.
  18. Gaydachuk, V. E., Mel'nikov, S. M. (2006). O vozmozhnosti reglamentacii defektov, voznikayushchih v processe rastyazhki sotopaketa v sotoblok pri proizvodstve sotovyh zapolniteley. Aviacionno-kosmicheskaya tekhnika i tekhnologiya, 5 (31), 5–10.
  19. Slyvyns’kyy, V., Gajdachuk, A., Melnikov, S. M. et. al. (2007). Technological possibilities for increasing quality of honeycomb cores used in aerospace engineering. 58th International Astronautical Congress 2007 Hyderabad.
  20. Slivinsky, M., Slivinsky, V., Gajdachuk, V. et. al. (2004). New Possibilities of Creating Efficient Honeycomb Structures for Rockets and Spacrafts. 55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. doi: https://doi.org/10.2514/6.iac-04-i.3.a.10
  21. Slyvyns’kyy, V., Slyvyns’kyy, M., Polyakov, N. et. al. (2008). Scientific fundamentals of efficient adhesive joint in honeycomb structures for aerospace applications. 59th International Astronautical Congress 2008.
  22. Gaydachuk, V., Koloskova, G. (2016). Mathematical modeling of strength of honeycomb panel for packing and packaging with regard to deviations in the filler parameters. Eastern-European Journal of Enterprise Technologies, 6 (1 (84)), 37–43. doi: https://doi.org/10.15587/1729-4061.2016.85853
  23. Gaydachuk, V. E., Karpikova, O. A., Kirichenko, V. V., Kondrat'ev, A. V. (2014). Metod korrektirovaniya analiticheskih modeley fizicheskih processov, yavleniy ili svoystv ob'ektov s ispol'zovaniem eksperimental'nyh dannyh. Otkrytye informacionnye i komp'yuternye integrirovannye tekhnologii, 65, 169–181.
  24. Beer, F. P. (2009). Mechanics of materials. McGraw-Hill Higher Education, 782.
  25. Tekhnicheskie usloviya TU 46-21-169-83. Fol'ga iz alyuminievogo splava marki AMg2-N (1987). VPO «Soyuz-cvetmetobrabotka», 11.
  26. MIL-A-81596A. Aluminum Foil for Sandwich Construction.
  27. Slyvyns’kyy, V., Gajdachuk, V., Kirichenko, V., Kondratiev, A. (2012). Basic parameters’ optimization concept for composite nose fairings of launchers. 62nd International Astronautical Congress, 9, 5701–5710.

Downloads

Published

2018-10-05

How to Cite

Kondratiev, A., & Prontsevych, O. (2018). Stabilization of physical-mechanical characteristics of honeycomb filler based on the adjustment of technological techniques for its fabrication. Eastern-European Journal of Enterprise Technologies, 5(1 (95), 71–77. https://doi.org/10.15587/1729-4061.2018.143674

Issue

Section

Engineering technological systems