Optical properties of lithium nanoparticles

Authors

  • Володимир Никифорович Назаренко National university of Krivoy Rog XXII PartSiezd str., Krivoy Rog, Ukraine, 50023, Ukraine
  • Оксана Володимирівна Нестеренко National university of Krivoy Rog XXII PartSiezd str., Krivoy Rog, Ukraine, 50023, Ukraine
  • Іван Семенович Радченко National university of Krivoy Rog XXII PartSiezd str., Krivoy Rog, Ukraine, 50023, Ukraine
  • Ірина Борисівна Степанкіна National university of Krivoy Rog XXII PartSiezd str., Krivoy Rog, Ukraine, 50023, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.14468

Keywords:

Color centers, colloidal particle, cluster, spectra of light absorption, attenuation coefficient

Abstract

The modern physics of solids emphasis the physical properties of alkali-halide crystals and their practical application. For practical application of physics and chemistry of alkali-halide crystals, it is important to study the formation and properties of the point defects. The article presents the calculations of the spectra of light attenuation by spherical and ellipsoidal lithium nanoparticles in various environments. It also presents the measured spectra of light absorption and compares them with the calculated ones. This comparison allows the identification of colloidal bands of absorption of lithium in crystals. In addition, it provides an opportunity to assess the correctness of the spectral dependence and the values of the optical constants of the massive metal. The results obtained in the article, make it possible to evaluate the properties of nanoparticles of metals, which have unique properties, useful in modern technologies

Author Biographies

Володимир Никифорович Назаренко, National university of Krivoy Rog XXII PartSiezd str., Krivoy Rog, Ukraine, 50023

Candidate of engineering sciences, associate professor of department

Department of resistance of materials and structural  mechanics

Оксана Володимирівна Нестеренко, National university of Krivoy Rog XXII PartSiezd str., Krivoy Rog, Ukraine, 50023

Candidate of engineering sciences, associate professor of department

Department of mine aerology and occupational safety and health

 

Іван Семенович Радченко, National university of Krivoy Rog XXII PartSiezd str., Krivoy Rog, Ukraine, 50023

Candidate of physical and mathematical sciences, associate professor of department

Department of theoretical and applied mechanics 

Ірина Борисівна Степанкіна, National university of Krivoy Rog XXII PartSiezd str., Krivoy Rog, Ukraine, 50023

Senior teacher of department

Department of theoretical and applied mechanics 

References

  1. Bohun, A. Оптические спектры поглощения света в окрашенных кристаллах LiF [Текст] / A. Bohun // Чехосл. журн. физ. – 1964. – Т.14. – С. 312.
  2. Kamikawa, T. Optical properties of LiF [Текст] / T. Kamikawa, Y. Kazumata, K. Ozawa // Phys. Stat. Sol. – 1966. – V. 14. – P. 435.
  3. Алексеева, Е. П. Поглощение света в облученных γ-излучением кристаллах LiF [Текст] / Е. П. Алексеева // Известия АН СССР, серия Физика. – 1967. – Т.31. – С. 1958.
  4. Ворожейкина, Л. Ф. Спектры поглощения света в облученных γ радиацией Co60 кристаллах LiF [Текст] / Л. Ф. Ворожейкина // Известия АН СССР, серия Физика. – 1967. – Т.31. – С. 1937.
  5. Радченко, И. С. Коллоидные центры окраски в кристаллах фторида лития [Текст] / И. С. Радченко // Физика твердого тела. – 1969. – Т. 11, в. 7. – С. 1829-1834.
  6. Farge, Y. Optical observation of interstitial lithium in irradiated lithium fluoride [Текст] / Y. Farge, M. Lambert, A. J. Guinier // Phys. Chem. Sol. – 1966. – V. 27. – P. 499.
  7. Политов, Н. Г. Центры окраски в облученных γ-излучением кристаллах LiF [Текст] / Н. Г. Политов // Известия АН СССР, серия Физика. – 1967. – Т.31. – С. 1926.
  8. Брюквина, Л. И. Образование и свойства металлических наночастиц во фторидах лития и натрия с радиационно созданными центрами окраски [Текст] / Л. И. Брюквина, Е. Ф. Мартынович // Физика твердого тела. – 2012. – Т.54, вып. 12. – С. 2248-2253.
  9. Callcot, T. A. Ultraviolet optical properties of Li T. A. Callcot, E.T. Arakawa // J. Opt. Soc. Am. – 1974. – V. 64. – P. 839-845.
  10. Inagaki, T. Optical properties of solid Na and Li between 0,6 and 3,8 eV [Текст] / T. Inagaki, L. C. Emerson, E. T. Arakawa, W. Williams // Phys. Rev. B. – 1976. – V. 13. – P. 2305-2313.
  11. Mathewson, A. C. Optical absorption spectrum of lithium metal in the range 0,5-4 eV [Текст] / A. C. Mathewson, H. P. Myers // Philos. Mag. – 1972. – V. 25. – P. 853-863.
  12. Bösenberg, J. Bestimmung der optischen konstanten von lithium und natrium durch angeregte oberflächenplasmaschwingungen [Текст] / J. Bösenberg // Z. Phys. Chem. Abt. – 1975. – B. 22. – S. 261-271.
  13. Perdew, J. P. Calculation of the band structure, form surface and interband optical conductivity of lithium [Текст] / J. P. Perdew, S. H. Vosko // J. Phys. F., Metal Phys. – 1974. – V. 4. – P. 380-393.
  14. Rasigni, M. Optical constants of lithium deposits as determined from the Kramers-Kronig analysis [Текст] / М. Rasigni, G. Rasigni // J. Opt. Soc. Amer. – 1977. – V. 67. – P. 54-59.
  15. Носков, М. М. Оптические и магнитооптические свойства металлов [Текст] / М. М. Носков. – Свердловск: УНЦ АН СССР, 1983. –с. 219.
  16. Li, H. H. Refractive index of Alkali Halides and its wavelength and Temperature Derivatives [Текст] / H. H. Li// Journal of physical and chemical reference data. – 1976. – V. 5, No.2. – P. 329-528.
  17. Mie, G. Beitrage zur Optic truber Medien speciell kolloidaler Metallösungen [Текст] / G. Mie // Ann. Phys. – 1908. – Bd. 25. – S. 377-445.
  18. Радченко, И. С. Определение размеров частиц и агрегативной устойчивости органозолей цинка по спектрам ослабления и рассеяния света [Текст] / И. С. Радченко, А. Ю. Малиновская // Восточно-Европейский журнал передовых технологий. – 2012. – №2/5(56). – С. 15-24.
  19. Шифрин, К. С. Рассеяние света в мутной среде [Текст] / К.С.Шифрин. – М.: Государственное издательство технико-теоретической литературы, 1951.–. 289 с.
  20. Person, B. N. J. Optical properties of two dimensional systems of randomly distributed particles [Текст] / B. N. J. Person, A. Liebsch // Phys. Rev. B. – 1983. – Vol. 29, №8. – P. 4247-4257.
  21. Gans, R. Über die Form ultramikroskopischer Goldteilchen [Текст] / R. Gans // Annalen der Physik. – 1912. – Bd. 37. – S. 881-900.
  22. Kreibig, U. The limitation of electron meam free part in small silver particles [Текст] / U. Kreibig, C. Fragstein // Z. Physik. – 1969. – V. 224. – P. 308-323.
  23. Coronado, E. A. Surface Plasmon Broadering for Arbitrary Shape Nanoparticles: A Geometrical Probability Approach [Текст] / E. A. Coronado, G. C. Schatz // J. Chem. Phys. – 2003. – V. 119. – P. 3926-3934.
  24. Ruppin, R. Optical properties of small metal spheres [Текст] / R. Ruppin // Phys. Rev. B. – 1975. – V. 11. – P. 2871-2876.
  25. Bohun, A. (1964). Light-spectrums of absorption of light are in the painted crystals LiF. Czechoslovakia magazine of physics, 14, 312.
  26. Kamikawa, T., Kazumata, Y., Ozawa, K. (1966). Optical properties of LiF. Phys. Stat. Sol., 14, 435.
  27. Alekseeva, E. P. (1967). Absorption of light is in the radiation-exposed a γ-radiation LiF - crystals. News of Academy of sciences of the USSR, series of Physics, 31, 1958.
  28. Vorozheykina, L. F. (1967). Spectrums of absorption of light are in the LiF -crystals radiation-exposed a γ radiation Co60. News of Academy of sciences of the USSR, series of Physics, 31, 1937.
  29. Radchenko, I. S. (1969). Colloidal color centers in lithium fluoride crystals. Solid State Physics, 11, 7, 1829-1834.
  30. Farge, Y., Lambert, M., Guinier, A. J. (1066). Optical observation of interstitial lithium in irradiated lithium fluoride. Phys. Chem. Sol., 27, 499.
  31. Politov, N. G. (1967). Centers of colouring are in the LiF -crystals radiation-exposed a γ-radiation. News of Academy of sciences of the USSR, series of Physics, 31, 1926.
  32. Bryukvina, L. I., Martinovich, E. F. (2012). The formation and properties of metal nanoparticles in lithium fluoride and sodium radiation created color centers. Solid State Physics, 54, 12, 2248-2253.
  33. Callcot, T. A., Arakawa, E. T. (1974). Ultraviolet optical properties of Li. J. Opt. Soc. Am., 64, 839-845.
  34. Inagaki. T., Emerson, L. C., Arakaw,a E. T., Williams, W. (1976). Optical properties of solid Na and Li between 0,6 and 3,8 eV. Phys. Rev. B., 13, 2305-2313.
  35. Mathewson, A. C., Myers, H. P. (1972). Optical absorption spectrum of lithium metal in the range 0,5-4 eV. Philos. Mag., 25, 853-863.
  36. Bosenberg, J. (1975). Determination of the optical constants of lithium and sodium by excited surface plasma oscillations. J. Phys. Chem. Dep., 22, 261-271.
  37. Perdew, J. P., Vosko, S. H. (1974). Calculation of the band structure, form surface, and interband optical conductivity of lithium. J. Phys. F.: Metal Phys., 4, 380-393.
  38. Rasigni, M., Rasigni, G. (1977). Optical constants of lithium deposits as determined from the Kramers-Kronig analysis. J. Opt. Soc. Amer., 67, 54-59.
  39. Noskov, M. M. (1983). Optical and magneto-optical properties of metals. Sverdlovsk, USSA, Educational-scientific center of Academy of sciences of the USSR.
  40. Li, H. H. (1976). Refractive index of Alkali Halides and its wavelength and Temperature Derivatives. Journal of physical and chemical reference data, 5, №2, 329-528.
  41. Mie, G. (1908). Contributions to Optic turbid media specially colloidal metal solutions. Ann. Phys., 25, 377-445.
  42. Radchenko, I. S., Malinovskaya, A. Yu. (2012). Determining size particles and aggregate stability of organosols of zinc on the spectrums of weakening and dispersion of light. East European Journal of advanced technology, №2/5(56), 15-24.
  43. Shifrin, K. S. (1951). Dispersion of light is in a turbid environment. Мoscow, USSA, State publishing technical and theoretical literature.
  44. Person, B. N. J., Liebsch, A. (1983). Optical properties of two dimensional systems of randomly distributed particles. Phys. Rev. B., 29, №8, 4247-4257.
  45. Gans, R. (1912). About the form of ultramicroscopic particles of gold. Annals of Physics, 37, 881-900.
  46. Kreibig, U., Fragstein, C. (1969). The limitation of electron meam free part in small silver particles. Z. Physik, 224, 308-323.
  47. Coronado, E. A., Schatz, G. C. (2003). Surface Plasmon Broadering for Arbitrary Shape Nanoparticles: A Geometrical Probability Approach. J. Chem. Phys., 119, 3926-3934.
  48. Ruppin, R. (1975). Optical properties of small metal spheres. Phys. Rev. B., 11, 2871-2876.

Published

2013-06-20

How to Cite

Назаренко, В. Н., Нестеренко, О. В., Радченко, І. С., & Степанкіна, І. Б. (2013). Optical properties of lithium nanoparticles. Eastern-European Journal of Enterprise Technologies, 3(5(63), 8–18. https://doi.org/10.15587/1729-4061.2013.14468