Development of a method for estimating the resistance of fibers and threads to a sliding bend based on energy consumption for external and internal friction

Authors

  • Evgeny Pashin Federal State Budget Educational Institution of Higher Education "Kostroma State Agricultural Academy" Training Town, 34, Karavaevo village, Kostroma region, Russia, 156530, Russian Federation https://orcid.org/0000-0002-5871-874X
  • Alexander Orlov Federal State Budget Educational Institution of Higher Education "Kostroma state University" Dzerzhinsky str., 17, Kostroma, Kostroma region, Russia, 156005, Russian Federation https://orcid.org/0000-0002-4995-3393
  • Mikhail Volkhonov Federal State Budget Educational Institution of Higher Education "Kostroma State Agricultural Academy" Training Town, 34, Karavaevo village, Kostroma region, Russia, 156530, Russian Federation https://orcid.org/0000-0003-0332-8848

DOI:

https://doi.org/10.15587/1729-4061.2018.148739

Keywords:

thread, rolling, sliding bend, thread-guiding gear, consumed energy, external and internal friction, control method

Abstract

We present materials for constructing an instrumental method for assessing resistance of threads to the sliding bend relative to cylindrical surfaces in order to solve tasks on control and prediction of conditions for their processing at minimal cost of production. Underlying the method is the differential accounting of energy consumed to overcome the internal and external friction.

The main objective of this study was to improve informativeness of the results obtained in the analysis of fires and threads through manifestations of physical- mechanical properties predetermined by patterns in their structure and composition, as well as by characteristics of the streamlined surfaces. It has been proposed to test the thread based on the simulated actual conditions for frictional interaction when bending radius r of the working bodies’ edges should be commensurate with the thickness of the thread. Given such a variant of testing, we have identified conditions that ensure the manifestation of parameters for the internal and external friction, which made it possible to devise a technological scheme of tests and to conduct comparative analyses of threads in materials with different structure and properties.

We have proposed, as an estimate that characterizes the manifestation of only the external friction at a cylindrical surface of curvature 1/r, the magnitude of energy Аext. consumed to displace a thread (of rigidity EI and with a stretched force) under condition 2T(r)2/El ≥ 1500. To account for the total energy A due to the external and internal friction, as an estimate that characterizes the resistance of a thread against a sliding bending, the test conditions imply the application of a bending surface with elevated curvature 1/r1, that is r1<<r.

In order to calculate the estimate D as the proportion of energy Аintern required to overcome the internal friction, the dependence D=[(А–Аext.)/A]·100, %, is used. It has been proposed to perform tests in two stages, each of which implies that a thread, stretched by a constant force, should streamline cylindrical surfaces at an unchanged capture angle, while the radius of the curvature varies at each stage.

Effectiveness of the proposed method for assessing resistance against a sliding bend has been confirmed by the results of experiments. We have established a possibility to differentiate the tested threads and yarn based on the magnitude of estimates Аext and D under different conditions for interaction with a cylindrical surface. The results obtained allow us to recommend the proposed method for practical implementation, specifically, to control the degree of thread passability through the machine thread-guiding gear

Author Biographies

Evgeny Pashin, Federal State Budget Educational Institution of Higher Education "Kostroma State Agricultural Academy" Training Town, 34, Karavaevo village, Kostroma region, Russia, 156530

Doctor of Technical Sciences, Professor

Department of technical systems in agro-industrial complex

Alexander Orlov, Federal State Budget Educational Institution of Higher Education "Kostroma state University" Dzerzhinsky str., 17, Kostroma, Kostroma region, Russia, 156005

Senior Lecturer

Department of information systems and technologies

Mikhail Volkhonov, Federal State Budget Educational Institution of Higher Education "Kostroma State Agricultural Academy" Training Town, 34, Karavaevo village, Kostroma region, Russia, 156530

Doctor of Technical Sciences, Professor

Department of technical systems in agro-industrial complex

References

  1. Pakshver, A. B., Mel'nikov, B. N., Usenko, V. A. et. al. (1975). Svoystva i osobennosti pererabotki himicheskih volokon. Moscow: Himiya, 495.
  2. Kagan, V. M. (1984). Vzaimodeystvie niti s rabochimi organami tekstil'nyh mashin. Moscow, 118.
  3. Kogan, A. G., Skobova, N. V. (2009). Tekhnologiya i oborudovanie dlya proizvodstva rovnicy i pryazhi. Vitebsk: VGTU, 239.
  4. Citovich, I. G. (1992). Tekhnologicheskoe obespechenie kachestva i effektivnosti processov vyazaniya poperechnogo trikotazha. Moscow: Legprombytizdat, 240.
  5. Nikolaev, S. D., Vlasov, P. V. et. al. (1995). Teoriya processov, tekhnologiya i oborudovanie tkackogo proizvodstva. Мoscow, 256.
  6. Chaykin, V. A. (2001). Prikladnye zadachi teorii niti. Sankt-Peterburg, 178.
  7. Krutikova, V. R. (2006). Vzaimodeystvie niti s rabochimi organami plosko- i kruglovyazal'nyh mashin. Kostroma: KGTU, 103.
  8. Sevost'yanov, A. G., Os'min, N. A., Shcherbakov, V. P., Galkin, V. F., Kozlov, V. G., Gilyarevskiy, V. S., Litvinov, M. S.; Sevost'yanov, A. G. (Ed.) (1989). Mekhanicheskaya tekhnologiya tekstil'nyh materialov. Moscow: Legprombytizdat, 512.
  9. Sinoimeri, A. (2009). Friction in textile fibers and its role in fiber processing. Wear, 267 (9-10), 1619–1624. doi: https://doi.org/10.1016/j.wear.2009.06.010
  10. Ahmad, S., Sinoimeri, A., Nowrouzieh, S. (2012). The Effect of the Sliver Fiber Configuration on the Cotton Inter-fiber Frictional Forces. Journal of Engineered Fibers and Fabrics, 7 (2), 155892501200700. doi: https://doi.org/10.1177/155892501200700213
  11. Gao, X., Wang, L., Hao, X. (2015). An improved Capstan equation including power-law friction and bending rigidity for high performance yarn. Mechanism and Machine Theory, 90, 84–94. doi: https://doi.org/10.1016/j.mechmachtheory.2015.03.005
  12. Ehrmann, A., Błachowicz, T. (2017). Examination of textiles with mathematical and physical methods. Cham: Springer, 180. doi: https://doi.org/10.1007/978-3-319-47408-3
  13. Shcherbakov, V. P. (2007). Ocherk o mekhanike niti. Izv. vuzov. Tekhnologiya tekstil'noy promyshlennosti, 6, 86–89.
  14. Ogibalov, P. M., Rabinovich, A. L., Fedotov, N. M. (1939). O silah vzaimodeystviya mezhdu trosom i shkivom. Prikladnaya matematika i mekhanika, 3 (3), 111–123.
  15. Efremov, E. D. (1958). Vliyanie tolshchiny niti i geometricheskih parametrov rabochih organov na natyazhenie niti. Izv. vuzov. Tekhnologiya tekstil'noy promyshlennosti, 6, 63–67.
  16. Migushov, I. I. (1967). Natyazhenie niti s uchetom zhestkosti i razmerov poperechnogo secheniya. Izv. vuzov. Tekhnologiya tekstil'noy promyshlennosti, 3, 138–142.
  17. Surkov, K. S. (1974). Vliyanie zhestkosti niti na ee natyazhenie pri vzaimodeystvii s petleobrazuyushchimi organami trikotazhnyh mashin. Leningrad: Izd. LGU, 107.
  18. Migushov, I. I. (1978). Natyazhenie nelineyno – uprugoplastichnoy zhestkoy na izgib niti pri skol'zhenii po cilindru. Izv. vuzov. Tekhnologiya tekstil'noy promyshlennosti, 3, 48–53.
  19. Shcherbakov, V. P. (2013). Prikladnaya i strukturnaya mekhanika voloknistyh materialov. Moscow: Tiso Print, 304.
  20. Koritysskaya, T. Ya. (1976). O metodike opredeleniya zhestkosti niti. Izv. vuzov. Tekhnologiya tekstil'noy promyshlennosti, 3, 25–27.
  21. Shcherbakov, V. P. (1987). Teoreticheskie osnovy opredeleniya zhestkosti niti pri izgibe. Izv. vuzov. Tekhnologiya tekstil'noy promyshlennosti, 4, 13–16.
  22. Nikolaev, S. D. (1989). Teoreticheskie osnovy opredeleniya izgibnoy zhestkosti nitey pri izgibe. Izv. vuzov. Tekhnologiya tekstil'noy promyshlennosti, 2, 14–17.
  23. Migushov, I. I. Kutuzova, I. E. (1988). Metod opredeleniya harakteristik izgibnoy zhestkosti tekstil'nyh i drugih materialov. Izv. vuzov. Tekhnologiya tekstil'noy promyshlennosti, 5, 8–10.
  24. Krutikova, V. R., Obshchanskaya, I. V., Lustgarten, N. V. (2004). Opredelenie zhestkosti niti pri izgibe. Izv. vuzov. Tekhnologiya tekstil'noy promyshlennosti, 2, 11–14.
  25. Grechuhin, A. P. (2014). Sposob opredeleniya zhestkosti niti pri izgibe. Izv. vuzov. Tekhnologiya tekstil'noy promyshlennosti, 5, 47–51.
  26. Egorov, N. V., Shcherbakov, V. P. (2010). Noviy metod rascheta zhestkosti niti pri izgibe. Izv. vuzov. Tekhnologiya tekstil'noy promyshlennosti, 5, 23–27.
  27. GOST 29104.21-91. Industrial fabrics. Method for determination of flexural rigidity (2004). Moscow: IPK Izdatel'stvo standartov.
  28. Migushov, I. I., Fernando, S., Krasnov, A. A. (1991). Pat. No. 1824530 RF. Sposob izmereniya koefficienta zhestkosti niti na izgib. No. 4934555; declareted: 15.02.1991; published: 30.06.1993.
  29. Krutikova, V. R., Obshchanska, I. V., Obshchanskaya, I. V., Lustgarten, N. V. (2002). Pat. No. 2219544 RF. Method establishing rigidity of textile fiber in bending. No. RU2002121244A; declareted: 05.08.2002; declareted: 20.12.2003.
  30. Grechuhin, A. P., Seliverstov, V. Yu. (2013). Pat. No. 2535133 RF. Method of determining stiffness of textile thread in its bending. RU2013125636A; declareted: 03.06.2013; declareted: 10.12.2014.
  31. Kagan, V. M., Citovich, I. G. (1974). K raschetu natyazheniya niti pri dvizhenii po poverhnosti s bol'shoy kriviznoy. Izv. vuzov. Tekhnologiya legkoy promyshlennosti, 4, 129–134.
  32. Suharev, V. A., Matyushev, I. I. (1982). Raschet tel namotki. Moscow: Mashinostoenie, 136.
  33. Tiranov, V. G., Chaykin, V. A. (1998). Skol'zhenie vyazkouprugoy niti po cilindricheskoy poverhnosti. Izv. vuzov. Tekhnologiya tekstil'noy promyshlennosti, 3, 78–82.
  34. Feodos'ev, V. I. (1967). Izbrannye zadachi i voprosy po soprotivleniyu materialov. Moscow: Nauka, 376.
  35. Protalinskiy, S. E. (1998). Diskretnaya model' kontaktnogo vzaimodeystviya niti pri prodol'nom dvizhenii. Izv. vuzov. Tekhnologiya tekstil'noy promyshlennosti, 3, 82–85.
  36. Pashin, E. L. (2003). Uchet effekta sminaemosti volokna pri skol'zhenii ego s izgibom otnositel'no cilindricheskoy poverhnosti. Vestnik VNIILK, 1, 28–30.
  37. Lapshin, A. B., Pashin, E. L., Verizhnikova, N. M. (1999). Vliyanie szhimaemosti sloya l'nosyrca na silu natyazheniya pri trepanii. Izv. vuzov. Tekhnologiya tekstil'noy promyshlennosti, 1, 19–22.
  38. Chaykin, V. G., Chaykin, V. A., Mazin, L. S. (1998). Kolebaniya uprugogo tela, induciruemye skol'zyashchey po nemu nit'yu. RAN Problemy mashinostroeniya i nadezhnosti mashin, 3, 78–82.
  39. Bordeianu, D., Hristian, L., Lupu, I., Vilcu, A. (2014). Bending behavior of rayon and wool type polyester fibers thermal treated. Annals of the University of Oradea: Fascicle of Textiles, Leatherwork, XV (1), 15–18.
  40. Manin, V. N., Gromov, A. N., Grigor'ev, A. P. (1986). Defektnost' i ekspluatacionnye svoystva polimernyh materialov. Moscow: Himiya, 184.
  41. Shao, X., Qiu, Y., Wang, Y. (2005). Theoretical modeling of the tensile behavior of low-twist staple yarns: Part I – theoretical model. Journal of the Textile Institute, 96 (2), 61–68. doi: https://doi.org/10.1533/joti.2004.0002
  42. Gafurov, J., Mardonov, B., Gafurov, K., Rakhmatov, S. (2017). Elastic and elastic-plastic deformation of fibers under axial loading in twisted yarn. Vestnik Vitebskogo gosudarstvennogo universiteta, 2, 7–13.
  43. Perepelkin, K. E. (1985). Struktura i svoystva volokon. Moscow: Himiya, 208.
  44. Coy, B., Kartashov, E. M., Shevelev, V. V. (1999). Prochnost' i razrusheniya polimernyh plenok i volokon. Moscow: Himiya, 496.
  45. Vil'deman, V. E., Sokolkin, Yu. V., Tashkinov, A. A. (1997). Mekhanika neuprugogo deformirovaniya i razrusheniya kompozicionnyh materialov. Moscow: Nauka, 288.
  46. Bohoeva, L. A. (2007). Osobennosti rascheta na prochnost' elementov konstrukciy iz izotropnyh i kompozicionnyh materialov s dopustimymi defektami. Ulan-Ude: VSGTU, 192.
  47. Banakova, N. V., Krutikova, V. R. (2015). Analiz parametrov tekhnologicheskih processov prigotovitel'nogo, tkackogo i trikotazhnogo proizvodstv po tenzogrammam niti. Izv. vuzov. Tekhnologiya tekstil'noy promyshlennosti, 5, 100–105.
  48. Citovich, I. G. (1984). Teoreticheskie osnovy stabilizacii processa vyazaniya. Moscow: Legkaya i pishchevaya prom-t', 136.

Downloads

Published

2018-11-29

How to Cite

Pashin, E., Orlov, A., & Volkhonov, M. (2018). Development of a method for estimating the resistance of fibers and threads to a sliding bend based on energy consumption for external and internal friction. Eastern-European Journal of Enterprise Technologies, 6(1 (96), 80–87. https://doi.org/10.15587/1729-4061.2018.148739

Issue

Section

Engineering technological systems