Parameter optimization CCPP and coolant system gas turbine

Authors

  • Александр Матвеевич Клер Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences (ESI SB RAS) 664033, Russia, Irkutsk, Lermontov Str., 130, Russian Federation
  • Юрий Борисович Захаров Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences (ESI SB RAS) 664033, Russia, Irkutsk, Lermontov Str., 130, Russian Federation
  • Юлия Михайловна Потанина Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences (ESI SB RAS) 664033, Russia, Irkutsk, Lermontov Str., 130, Russian Federation

DOI:

https://doi.org/10.15587/1729-4061.2013.14877

Keywords:

optimization of combined cycle power plants, gas turbine cooling system

Abstract

Today most researchers optimize the parameters of cycles in combined cycle power plants without detailed calculations of the gas turbine flow path, which often involves separate optimization of the steam cycle and the gas turbine parameters, including the parameters of the gas turbine flow path that are usually known beforehand. This paper is the first to suggest a technique for coordinated optimization of combined cycle power plants, where both the parameters of the steam cycle in the combined cycle power plant and the parameters of the gas turbine, including the design parameters of its flow path, are optimized simultaneously.  Based on the proposed technique we carried out optimization studies on the combined cycle power plant with optimum capacity. We also made optimization studies on the combined cycle power plant using the classical separate technique. The developed technique suggests an approach to the estimation of investment in gas turbine plants. This technique can be used to conduct studies on gas turbine plants and combined cycle power plants for different types and ways of cooling the gas turbine flow path. The presented data of optimization calculations show the advantages of optimizing combined cycle power plants using this technique as compared to the methods, where gas turbine and the steam cycle of the combined cycle power plant are optimized separately. The economic effect of applying the proposed technique  is described. 

Author Biographies

Александр Матвеевич Клер, Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences (ESI SB RAS) 664033, Russia, Irkutsk, Lermontov Str., 130

Professor

Department of the Thermal power systems

Юрий Борисович Захаров, Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences (ESI SB RAS) 664033, Russia, Irkutsk, Lermontov Str., 130

Engineer

Department of the Thermal power systems

Юлия Михайловна Потанина, Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences (ESI SB RAS) 664033, Russia, Irkutsk, Lermontov Str., 130

Doctor

Department of the Thermal power systems

References

  1. Бойко, А. В. Аэродинамика проточной части паровых и газовых турбин: расчеты, исследования, оптимизация, проектирование [Текст] / А.В. Бойко. – Х. : ХПГУ, 1999. – 360 с.
  2. Бойко, А. В. Методы параметрической оптимизации навала направляющих турбинных лопаток [Текст] / А. В. Бойко, Ю. Н. Говорущенко, М. В. Бурлака // Вестник нац. технического университета “ХПИ” — 2010, №2.— С. 13—21.
  3. Лапшин, К. Л. Оптимизация проточных частей паровых и газовых турбин [Текст] / К. Л. Лапшин. – СПб. : Изд-во Политехнического университета, 2011. – 177 с.
  4. Huttunen, J. Optimization of the mean radius flow path of a multi-stage steam turbine with evolution algorithms [Текст] / J. Huttunen, L. Jaakko, T. Turunen-Saaresti, J. Backman, // Journal of Thermal Science – 2011/ - T. 20(4). – c. 318-323/
  5. Can Gulen, S. A Simple Parametric Model for the Analysis of Cooled Gas Turbines [Текст] / S. Can Gulen // J. Eng. Gas Turbines Power. – 2011. – T. 133(1). – c.1-13.
  6. Sanjay Y. Investigation of effect of variation of cycle parameters on thermodynamic performance of gas-steam combined cycle [Текст] / Y. Sanjay // International Journal Energy, – 2011. – T. 36(1). – c.157-167.
  7. Jordal, K. Optimization with genetic algorithms of a gas turbine cycle with H2-separating membrane reactor for CO2 capture [Текст] / K. Jordal, O. Bolland, F. M. Björn T. Torisson // International Journal of Green Energy, – 2005. – T. 2(2). – c.167-180.
  8. Srinivas, T.Thermodynamic modelling and optimization of a dual pressure reheat combined power cycle [Текст] / Srinivas T. // Sadhana, – 2010. – T. 35(5). – c. 597–608.
  9. Bojici, L. Technical optimization of a two-pressure level heat recovery steam generator [Текст] // L. Bojici, C. Neaga // U.P.B. Sci. Bull, – 2012. – T. 74 (2). – c. 209–216.
  10. Kavanagh, R. M. A Systematic Comparison and Multi-objective Optimization of Humid Power Cycles: Part I – Thermodynamics [Текст] / R. M. Kavanagh, G. T. Parks // ASME Journal of Engineering for Gas Turbines and Power, – 2009. – T. 131 (4) – c.1-13.
  11. Kler, A.M., Technical and economic studies on the optimization of prospective coal-fired power stations [Текст] / A. M. Kler, Y. M. Potanina // International Journal of Global Energy Issues, – 2003, T. 20.(4), – c. 340-352.
  12. Накоряков, В. Е. Комплексные технико-экономические исследования ПГУ с поточными газификаторами [Текст] / В.Е. Накоряков, Г. В. Ноздренко, П. А. Щинников, О. В. Боруш, А. Г. Кузьмин // Известия РАН. Энергетика. – 2010. – №4т – С. 184–193.
  13. Toffolo, A. Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design [Текст] / A. Toffolo, A. Lazaretto // Energy. – 2002. –T.27(6). – c. 549-569.
  14. . Cleeton, J. P. E. Blade cooling optimisation in humid-air and steam-injected gas turbines [Текст] / J. P .E. Cleeton, R. M. Kavanagh, G.T. Parks // Applied Thermal Engineering. – 2009. –T29. (16). –c.3274-3283
  15. . Ghigliazza, F. Thermoeconomic impact on combined cycle performance of advanced blade cooling systems [Текст] / F. Ghigliazza, A. Traverso, A. F. Massardo // Applied Energy. – 2009. – T.86 (10). – c.2130-2140
  16. . Клер, А. М. Оптимизация параметров цикла ГТУ и конструктивных параметров проточной части газовой турбины с охлаждаемыми сопловыми и рабочими лопатками [Текст] / А. М. Клер Ю. Б. Захаров // Теплофизика и аэромеханика— 2012. —Т. 19, №4.— С. 449—459.
  17. Korakianitis, T. Design of high-efficiency turbomachinery blades for energy conversion deviceswith the three-dimensional prescribed surface curvature distribution blade design (CIRCLE) method [Текст] / T. Korakianitis, I.A. Hamakhan, M.A. Rezaienia, A.P.S. Wheeler, E.J. Avital, J.J.R. Williams // Applied Energy. – 2012. – T.89(1). – c.215–227.
  18. Joly, M. M. Differential evolution based soft optimization to attenuate vane–rotor shock interaction in high-pressure turbines / M. M. Joly, T. Verstraete, G. Paniagua // Applied Soft Computing. – 2013. – T.13(4).– c.1882–1891.
  19. Основы проектирования турбин авиадвигателей [Текст] / А. В. Деревянко, В. А. Журавлев, В. В. Зикеев, В. В. Князев, С. З. Копелев, Д. В. Кудрявцев ; под общ. Ред. С. З. Копелева – М. : Машиностроение, 1988. – 328 с
  20. Методы оптимизации сложных теплоэнергетических установок [Текст] / А. М., Клер, Н. П. Деканова Т. П. Щёголева, З. Р. Корнеева, Т. И. Лачкова. – Н. : Наука, 1993. – 116 с.
  21. Клер, А.М., Учет переменного характера тепловых нагрузок при оптимизации теплофикационных энергетических установок [Текст] / А. М. Клер, Ю. М. Потанина, А. С. Максимов // Теплоэнергетика. –012, № 7. - С. 1-7.
  22. Теплосиловые системы: Оптимизационные исследования [Текст] / А. М. Клер, Н. П. Деканова., Э. А. Тюрина и др. Н. ; Наука, 2005. –236 с.
  23. Каблов, Е. Н. Никелевые литейные жаропрочные сплавы нового поколения [Текст] / Е. Н. Каблов, Н. В. Петрушин, И. Л. Светлов, И. М. Демонис // Журнал авиационные материалы и технологии. – 2012. – №6. – С. 1–24.
  24. Конструкция и проектирование авиационных газотурбинных двигателей [Текст] : учеб, пособие / С. А. Вьюнов, Ю. И. Гусев, А. В. Карпов. – М. : Машиностроение, 1989. –368 с.
  25. Boiko, A.V. (1999). Aerodynamics of Air-Gas Channel of Vapor and Gas Turbines: Calculations, Investigations, Optimization and Design. Kharkov, Russia: KhPGU.
  26. Boiko, A.V., Govoruschenko, Yu. N., Burlak, M.V. (2010) Methods for Parametric Optimization of Guiding Turbine Blade. Kharkov, Ukraine, NTU KhPI, 2, 1321.
  27. Lapshin, K.L. (2011). Optimization of Air-Gas Channels of Gas and Vapor Turbines, SPb, Russia, Polytechnic University.
  28. Huttunen, J., Jaakko, L., Turunen-Saaresti, T., Backman, J. (2011). Optimization of the mean radius flow path of a multi-stage steam turbine with evolution algorithms. Journal of Thermal Science, 20(4), 318-323
  29. Can Gulen, S. (2011).A Simple Parametric Model for the Analysis of Cooled Gas Turbines. J. Eng. Gas Turbines Power, 133(1), 1-13.
  30. Sanjay, Y. (2011).Investigation of effect of variation of cycle parameters on thermodynamic performance of gas-steam combined cycle. International Journal Energy, 36(1),
  31. -167.
  32. Jordal, K., Bolland, O., Björn, F. M. , Torisson, T. (2005). Optimization with genetic algorithms of a gas turbine cycle with H2-separating membrane reactor for CO2 capture. International Journal of Green Energy, 2(2), 167-180.
  33. Srinivas, T. (2010).Thermodynamic modelling and optimization of a dual pressure reheat combined power cycle. Sadhana, 35(5), 597–608.
  34. Bojici, L., Neaga, C. (2012).Technical optimization of a two-pressure level heat recovery steam generator. U.P.B. Sci. Bull, 74,(2), 209–216.
  35. Kavanagh, R. M., Parks, G. T. (2009). Systematic Comparison and Multi-objective Optimization of Humid Power Cycles: Part I – Thermodynamics. ASME Journal of Engineering for Gas Turbines and Power 131 (4), 13.
  36. Kler, A.M., Potanina, Y. M. (2003) Technical and economic studies on the optimization of prospective coal-fired power stations. International Journal of Global Energy Issues, 20.(4), 340-352.
  37. Nakoryakov, V.E., Nozdrenko, G.V., Schinnikov, P.A., Borush, O.V., Kuzmin, A.G. (2010) Complete feasibility studies CCPP, including gasifiers. Proceedings Russian Academy of Sciences,4, 184–193.
  38. Toffolo, A., Lazaretto, A. (2002). Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design. Energy, 27(6), 549-569.
  39. . Cleeton, J. P. E., Kavanagh, R. M., Parks G. T. (2009). Blade cooling optimisation in humid-air and steam-injected gas turbines. Applied Thermal Engineering, 29(16), 3274-3283.
  40. . Ghigliazza, F., Traverso, A., Massardo, A. F. (2009). Thermoeconomic impact on combined cycle performance of advanced blade cooling systems. Applied Energy, 86 (10), 2130-2140.
  41. . Kler, A. M., Zakharov Yu. B. (2012) Optimizing parameters of GTU cycle
  42. and design values of air-gas channel in a gas turbine with cooled nozzle and rotor blades. Thermophysics and Aeromechanics, 19(4), 449-459
  43. Korakianitis, T., Hamakhan, I.A., Rezaienia, M.A., Wheeler, A.P.S., Avital, E.J., Williams, J.J.R. (2012). Design of high-efficiency turbomachinery blades for energy conversion deviceswith the three-dimensional prescribed surface curvature distribution blade design. Applied Energy, 89(1), 215–227.
  44. Joly, M. M., Verstraete, T., Paniagua, G. (2013). Differential evolution based soft optimization to attenuate vane–rotor shock interaction in high-pressure turbines. Applied Soft Computing, 13(4), 1882–1891.
  45. Kopelev, S.Z. (1988). Fundamentals of Designing Turbines for Aero-Engines, Moscow, USSR Machine-Building.
  46. Kler, A.M. , Dekanova, N.P., Schegoleva, T.P., Korneeva, Z,R., Lachkova, T.I. (1993). Optimization Methods for Complex Heat and Power Engineering Plants, Novosibirsk, Russia, Nauka.
  47. Kler, A. M., Potanina, Y.M., Maximov A. S., (2012) Accounting for changing thermal loads in the optimization of cogeneration power plants. Thermal Engineering, 7, 1-7.
  48. Kler, A.M., Dekanova, N.P., Tyurina, E.A. Korneeva, Z.P., Marinchenko, A.Yu., Mikheev, A.V., Platonov, L.A., Potanina, Yu.M., Stepanova, E.L., Mednikov A.S. (2005) Thermopower Systems: Optimization Research. Novosibirsk, Russia: Nauka.
  49. Kablov, E.N., Petrushin, N.V., Svetlov, I.L., Demonis, I.M. (2012) Casting nickel superalloys new generation. Journal of aviation materials and technologies, 6, 1-24.
  50. Viyunov, S.A., Gusev, Yu.I. (1989) Constructing and Designing Gas Turbine Engines for Aerocraft, USSR: Machine-Building.

Published

2013-06-19

How to Cite

Клер, А. М., Захаров, Ю. Б., & Потанина, Ю. М. (2013). Parameter optimization CCPP and coolant system gas turbine. Eastern-European Journal of Enterprise Technologies, 3(12(63), 37–43. https://doi.org/10.15587/1729-4061.2013.14877

Issue

Section

Modern technologies in the gas-turbine