Parameter optimization CCPP and coolant system gas turbine
DOI:
https://doi.org/10.15587/1729-4061.2013.14877Keywords:
optimization of combined cycle power plants, gas turbine cooling systemAbstract
Today most researchers optimize the parameters of cycles in combined cycle power plants without detailed calculations of the gas turbine flow path, which often involves separate optimization of the steam cycle and the gas turbine parameters, including the parameters of the gas turbine flow path that are usually known beforehand. This paper is the first to suggest a technique for coordinated optimization of combined cycle power plants, where both the parameters of the steam cycle in the combined cycle power plant and the parameters of the gas turbine, including the design parameters of its flow path, are optimized simultaneously. Based on the proposed technique we carried out optimization studies on the combined cycle power plant with optimum capacity. We also made optimization studies on the combined cycle power plant using the classical separate technique. The developed technique suggests an approach to the estimation of investment in gas turbine plants. This technique can be used to conduct studies on gas turbine plants and combined cycle power plants for different types and ways of cooling the gas turbine flow path. The presented data of optimization calculations show the advantages of optimizing combined cycle power plants using this technique as compared to the methods, where gas turbine and the steam cycle of the combined cycle power plant are optimized separately. The economic effect of applying the proposed technique is described.
References
- Бойко, А. В. Аэродинамика проточной части паровых и газовых турбин: расчеты, исследования, оптимизация, проектирование [Текст] / А.В. Бойко. – Х. : ХПГУ, 1999. – 360 с.
- Бойко, А. В. Методы параметрической оптимизации навала направляющих турбинных лопаток [Текст] / А. В. Бойко, Ю. Н. Говорущенко, М. В. Бурлака // Вестник нац. технического университета “ХПИ” — 2010, №2.— С. 13—21.
- Лапшин, К. Л. Оптимизация проточных частей паровых и газовых турбин [Текст] / К. Л. Лапшин. – СПб. : Изд-во Политехнического университета, 2011. – 177 с.
- Huttunen, J. Optimization of the mean radius flow path of a multi-stage steam turbine with evolution algorithms [Текст] / J. Huttunen, L. Jaakko, T. Turunen-Saaresti, J. Backman, // Journal of Thermal Science – 2011/ - T. 20(4). – c. 318-323/
- Can Gulen, S. A Simple Parametric Model for the Analysis of Cooled Gas Turbines [Текст] / S. Can Gulen // J. Eng. Gas Turbines Power. – 2011. – T. 133(1). – c.1-13.
- Sanjay Y. Investigation of effect of variation of cycle parameters on thermodynamic performance of gas-steam combined cycle [Текст] / Y. Sanjay // International Journal Energy, – 2011. – T. 36(1). – c.157-167.
- Jordal, K. Optimization with genetic algorithms of a gas turbine cycle with H2-separating membrane reactor for CO2 capture [Текст] / K. Jordal, O. Bolland, F. M. Björn T. Torisson // International Journal of Green Energy, – 2005. – T. 2(2). – c.167-180.
- Srinivas, T.Thermodynamic modelling and optimization of a dual pressure reheat combined power cycle [Текст] / Srinivas T. // Sadhana, – 2010. – T. 35(5). – c. 597–608.
- Bojici, L. Technical optimization of a two-pressure level heat recovery steam generator [Текст] // L. Bojici, C. Neaga // U.P.B. Sci. Bull, – 2012. – T. 74 (2). – c. 209–216.
- Kavanagh, R. M. A Systematic Comparison and Multi-objective Optimization of Humid Power Cycles: Part I – Thermodynamics [Текст] / R. M. Kavanagh, G. T. Parks // ASME Journal of Engineering for Gas Turbines and Power, – 2009. – T. 131 (4) – c.1-13.
- Kler, A.M., Technical and economic studies on the optimization of prospective coal-fired power stations [Текст] / A. M. Kler, Y. M. Potanina // International Journal of Global Energy Issues, – 2003, T. 20.(4), – c. 340-352.
- Накоряков, В. Е. Комплексные технико-экономические исследования ПГУ с поточными газификаторами [Текст] / В.Е. Накоряков, Г. В. Ноздренко, П. А. Щинников, О. В. Боруш, А. Г. Кузьмин // Известия РАН. Энергетика. – 2010. – №4т – С. 184–193.
- Toffolo, A. Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design [Текст] / A. Toffolo, A. Lazaretto // Energy. – 2002. –T.27(6). – c. 549-569.
- . Cleeton, J. P. E. Blade cooling optimisation in humid-air and steam-injected gas turbines [Текст] / J. P .E. Cleeton, R. M. Kavanagh, G.T. Parks // Applied Thermal Engineering. – 2009. –T29. (16). –c.3274-3283
- . Ghigliazza, F. Thermoeconomic impact on combined cycle performance of advanced blade cooling systems [Текст] / F. Ghigliazza, A. Traverso, A. F. Massardo // Applied Energy. – 2009. – T.86 (10). – c.2130-2140
- . Клер, А. М. Оптимизация параметров цикла ГТУ и конструктивных параметров проточной части газовой турбины с охлаждаемыми сопловыми и рабочими лопатками [Текст] / А. М. Клер Ю. Б. Захаров // Теплофизика и аэромеханика— 2012. —Т. 19, №4.— С. 449—459.
- Korakianitis, T. Design of high-efficiency turbomachinery blades for energy conversion deviceswith the three-dimensional prescribed surface curvature distribution blade design (CIRCLE) method [Текст] / T. Korakianitis, I.A. Hamakhan, M.A. Rezaienia, A.P.S. Wheeler, E.J. Avital, J.J.R. Williams // Applied Energy. – 2012. – T.89(1). – c.215–227.
- Joly, M. M. Differential evolution based soft optimization to attenuate vane–rotor shock interaction in high-pressure turbines / M. M. Joly, T. Verstraete, G. Paniagua // Applied Soft Computing. – 2013. – T.13(4).– c.1882–1891.
- Основы проектирования турбин авиадвигателей [Текст] / А. В. Деревянко, В. А. Журавлев, В. В. Зикеев, В. В. Князев, С. З. Копелев, Д. В. Кудрявцев ; под общ. Ред. С. З. Копелева – М. : Машиностроение, 1988. – 328 с
- Методы оптимизации сложных теплоэнергетических установок [Текст] / А. М., Клер, Н. П. Деканова Т. П. Щёголева, З. Р. Корнеева, Т. И. Лачкова. – Н. : Наука, 1993. – 116 с.
- Клер, А.М., Учет переменного характера тепловых нагрузок при оптимизации теплофикационных энергетических установок [Текст] / А. М. Клер, Ю. М. Потанина, А. С. Максимов // Теплоэнергетика. –012, № 7. - С. 1-7.
- Теплосиловые системы: Оптимизационные исследования [Текст] / А. М. Клер, Н. П. Деканова., Э. А. Тюрина и др. Н. ; Наука, 2005. –236 с.
- Каблов, Е. Н. Никелевые литейные жаропрочные сплавы нового поколения [Текст] / Е. Н. Каблов, Н. В. Петрушин, И. Л. Светлов, И. М. Демонис // Журнал авиационные материалы и технологии. – 2012. – №6. – С. 1–24.
- Конструкция и проектирование авиационных газотурбинных двигателей [Текст] : учеб, пособие / С. А. Вьюнов, Ю. И. Гусев, А. В. Карпов. – М. : Машиностроение, 1989. –368 с.
- Boiko, A.V. (1999). Aerodynamics of Air-Gas Channel of Vapor and Gas Turbines: Calculations, Investigations, Optimization and Design. Kharkov, Russia: KhPGU.
- Boiko, A.V., Govoruschenko, Yu. N., Burlak, M.V. (2010) Methods for Parametric Optimization of Guiding Turbine Blade. Kharkov, Ukraine, NTU KhPI, 2, 1321.
- Lapshin, K.L. (2011). Optimization of Air-Gas Channels of Gas and Vapor Turbines, SPb, Russia, Polytechnic University.
- Huttunen, J., Jaakko, L., Turunen-Saaresti, T., Backman, J. (2011). Optimization of the mean radius flow path of a multi-stage steam turbine with evolution algorithms. Journal of Thermal Science, 20(4), 318-323
- Can Gulen, S. (2011).A Simple Parametric Model for the Analysis of Cooled Gas Turbines. J. Eng. Gas Turbines Power, 133(1), 1-13.
- Sanjay, Y. (2011).Investigation of effect of variation of cycle parameters on thermodynamic performance of gas-steam combined cycle. International Journal Energy, 36(1),
- -167.
- Jordal, K., Bolland, O., Björn, F. M. , Torisson, T. (2005). Optimization with genetic algorithms of a gas turbine cycle with H2-separating membrane reactor for CO2 capture. International Journal of Green Energy, 2(2), 167-180.
- Srinivas, T. (2010).Thermodynamic modelling and optimization of a dual pressure reheat combined power cycle. Sadhana, 35(5), 597–608.
- Bojici, L., Neaga, C. (2012).Technical optimization of a two-pressure level heat recovery steam generator. U.P.B. Sci. Bull, 74,(2), 209–216.
- Kavanagh, R. M., Parks, G. T. (2009). Systematic Comparison and Multi-objective Optimization of Humid Power Cycles: Part I – Thermodynamics. ASME Journal of Engineering for Gas Turbines and Power 131 (4), 13.
- Kler, A.M., Potanina, Y. M. (2003) Technical and economic studies on the optimization of prospective coal-fired power stations. International Journal of Global Energy Issues, 20.(4), 340-352.
- Nakoryakov, V.E., Nozdrenko, G.V., Schinnikov, P.A., Borush, O.V., Kuzmin, A.G. (2010) Complete feasibility studies CCPP, including gasifiers. Proceedings Russian Academy of Sciences,4, 184–193.
- Toffolo, A., Lazaretto, A. (2002). Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design. Energy, 27(6), 549-569.
- . Cleeton, J. P. E., Kavanagh, R. M., Parks G. T. (2009). Blade cooling optimisation in humid-air and steam-injected gas turbines. Applied Thermal Engineering, 29(16), 3274-3283.
- . Ghigliazza, F., Traverso, A., Massardo, A. F. (2009). Thermoeconomic impact on combined cycle performance of advanced blade cooling systems. Applied Energy, 86 (10), 2130-2140.
- . Kler, A. M., Zakharov Yu. B. (2012) Optimizing parameters of GTU cycle
- and design values of air-gas channel in a gas turbine with cooled nozzle and rotor blades. Thermophysics and Aeromechanics, 19(4), 449-459
- Korakianitis, T., Hamakhan, I.A., Rezaienia, M.A., Wheeler, A.P.S., Avital, E.J., Williams, J.J.R. (2012). Design of high-efficiency turbomachinery blades for energy conversion deviceswith the three-dimensional prescribed surface curvature distribution blade design. Applied Energy, 89(1), 215–227.
- Joly, M. M., Verstraete, T., Paniagua, G. (2013). Differential evolution based soft optimization to attenuate vane–rotor shock interaction in high-pressure turbines. Applied Soft Computing, 13(4), 1882–1891.
- Kopelev, S.Z. (1988). Fundamentals of Designing Turbines for Aero-Engines, Moscow, USSR Machine-Building.
- Kler, A.M. , Dekanova, N.P., Schegoleva, T.P., Korneeva, Z,R., Lachkova, T.I. (1993). Optimization Methods for Complex Heat and Power Engineering Plants, Novosibirsk, Russia, Nauka.
- Kler, A. M., Potanina, Y.M., Maximov A. S., (2012) Accounting for changing thermal loads in the optimization of cogeneration power plants. Thermal Engineering, 7, 1-7.
- Kler, A.M., Dekanova, N.P., Tyurina, E.A. Korneeva, Z.P., Marinchenko, A.Yu., Mikheev, A.V., Platonov, L.A., Potanina, Yu.M., Stepanova, E.L., Mednikov A.S. (2005) Thermopower Systems: Optimization Research. Novosibirsk, Russia: Nauka.
- Kablov, E.N., Petrushin, N.V., Svetlov, I.L., Demonis, I.M. (2012) Casting nickel superalloys new generation. Journal of aviation materials and technologies, 6, 1-24.
- Viyunov, S.A., Gusev, Yu.I. (1989) Constructing and Designing Gas Turbine Engines for Aerocraft, USSR: Machine-Building.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Александр Матвеевич Клер, Юрий Борисович Захаров, Юлия Михайловна Потанина
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.