Effect of backward facing step on combustion stability in a constant contact area cylindrical meso­scale combustor

Authors

  • Andi Sanata Brawijaya University Jalan Mayjend. Haryono, 167, Malang, Jawa Timur, Indonesia, 65145, Indonesia https://orcid.org/0000-0001-5508-8642
  • I Nyoman Gede Wardana Brawijaya University Jalan Mayjend. Haryono, 167, Malang, Jawa Timur, Indonesia, 65145, Indonesia https://orcid.org/0000-0003-3146-9517
  • Lilis Yuliati Brawijaya University Jalan Mayjend. Haryono, 167, Malang, Jawa Timur, Indonesia, 65145, Indonesia
  • Mega Nur Sasongko Brawijaya University Jalan Mayjend. Haryono, 167, Malang, Jawa Timur, Indonesia, 65145, Indonesia

DOI:

https://doi.org/10.15587/1729-4061.2019.149217

Keywords:

backward facing step, cylindrical meso-scale combustor, constant contact area, flame holder, flame stability limit

Abstract

This experiment investigates the effect of backward facing step size variation on combustion stability in the cylindrical meso-scale combustor with the constant contact area. The backward facing step was varied by changing the combustor inlet diameter while the combustor diameter at the combustion zone was kept constant, i.e. has a constant contact area. Butane gas (C4H10) was used as fuel with air as an oxidizing agent. The result shows that the backward facing step has an important role in the combustion stabilization mechanism. Stable flame could be stabilized inside the meso-scale combustor with the backward facing step. Without the backward facing step, the flame blows out, then stable at the combustor rim. Recirculation flow occurs in the area behind the backward facing step. The increasing backward facing step size leads to an increase in reactant inlet velocity, recirculation flow size and shear stress in the area near the backward facing step. At large backward facing step size, the high reactant inlet velocity together with the large shear stress quenches the flame while the heat recovered by recirculation flow is less sufficient to stabilize flame so that the flame drifts to the downstream position. Hence bigger backward facing step size causes narrower flame stability limit area. The smaller the backward facing step size the wider the flame stability limit which shifts more toward lower equivalence ratio and high reactant velocity regions. Decreasing the backward facing step size decreases the reactant velocity into the combustion reaction zone as well as decreases the recirculation flow and the shear stress, so that the quenching effect decreases. The smaller recirculation flow has a better function for the flame holder to increase flame stability inside the meso-scale combustor. Therefore, small backward facing step size has a very important role in recovering heat energy stabilizing the flame in the meso-scale combustor

Supporting Agencies

  • Acknowledgments are addressed to The Directorate of Research and Community Service
  • Directorate General of Research and Development Strengthening
  • Ministry of Research
  • Technology
  • and Higher Education of the Republic of Indonesia
  • who have supported this

Author Biographies

Andi Sanata, Brawijaya University Jalan Mayjend. Haryono, 167, Malang, Jawa Timur, Indonesia, 65145

Doctoral Student in Mechanical Engineering

Department of Mechanical Engineering

I Nyoman Gede Wardana, Brawijaya University Jalan Mayjend. Haryono, 167, Malang, Jawa Timur, Indonesia, 65145

Professor in Mechanical Engineering

Department of Mechanical Engineering

Lilis Yuliati, Brawijaya University Jalan Mayjend. Haryono, 167, Malang, Jawa Timur, Indonesia, 65145

Doctorate in Mechanical Engineering

Department of Mechanical Engineering

Mega Nur Sasongko, Brawijaya University Jalan Mayjend. Haryono, 167, Malang, Jawa Timur, Indonesia, 65145

Doctorate in Mechanical Engineering

Department of Mechanical Engineering

References

  1. Mikami, M., Maeda, Y., Matsui, K., Seo, T., Yuliati, L. (2013). Combustion of gaseous and liquid fuels in meso-scale tubes with wire mesh. Proceedings of the Combustion Institute, 34 (2), 3387–3394. doi: https://doi.org/10.1016/j.proci.2012.05.064
  2. Yang, W. M., Chou, S. K., Shu, C., Li, Z. W., Xue, H. (2002). Combustion in micro-cylindrical combustors with and without a backward facing step. Applied Thermal Engineering, 22 (16), 1777–1787. doi: https://doi.org/10.1016/s1359-4311(02)00113-8
  3. Xue, H., Yang, W., Chou, S. K., Shu, C., Li, Z. (2005). Microthermophotovoltaics Power System for Portable MEMS Devices. Microscale Thermophysical Engineering, 9 (1), 85–97. doi: https://doi.org/10.1080/10893950590913431
  4. Chou, S. K., Yang, W. M., Chua, K. J., Li, J., Zhang, K. L. (2011). Development of micro power generators – A review. Applied Energy, 88 (1), 1–16. doi: https://doi.org/10.1016/j.apenergy.2010.07.010
  5. Maruta, K. (2011). Micro and mesoscale combustion. Proceedings of the Combustion Institute, 33 (1), 125–150. doi: https://doi.org/10.1016/j.proci.2010.09.005
  6. Ju, Y., Maruta, K. (2011). Microscale combustion: Technology development and fundamental research. Progress in Energy and Combustion Science, 37 (6), 669–715. doi: https://doi.org/10.1016/j.pecs.2011.03.001
  7. Wan, J., Fan, A., Liu, Y., Yao, H., Liu, W., Gou, X., Zhao, D. (2015). Experimental investigation and numerical analysis on flame stabilization of CH 4 /air mixture in a mesoscale channel with wall cavities. Combustion and Flame, 162 (4), 1035–1045. doi: https://doi.org/10.1016/j.combustflame.2014.09.024
  8. Yuliati, L., Seo, T., Mikami, M. (2012). Liquid-fuel combustion in a narrow tube using an electrospray technique. Combustion and Flame, 159 (1), 462–464. doi: https://doi.org/10.1016/j.combustflame.2011.06.010
  9. Li, Z. W., Chou, S. K., Shu, C., Xue, H., Yang, W. M. (2005). Characteristics of premixed flame in microcombustors with different diameters. Applied Thermal Engineering, 25 (2-3), 271–281. doi: https://doi.org/10.1016/j.applthermaleng.2004.06.007
  10. Pan, J., Zhang, R., Lu, Q., Zha, Z., Bani, S. (2017). Experimental study on premixed methane-air catalytic combustion in rectangular micro channel. Applied Thermal Engineering, 117, 1–7. doi: https://doi.org/10.1016/j.applthermaleng.2017.02.008
  11. Chou, S. K., Yang, W. M., Li, J., Li, Z. W. (2010). Porous media combustion for micro thermophotovoltaic system applications. Applied Energy, 87 (9), 2862–2867. doi: https://doi.org/10.1016/j.apenergy.2009.06.039
  12. Pan, J. F., Wu, D., Liu, Y. X., Zhang, H. F., Tang, A. K., Xue, H. (2015). Hydrogen/oxygen premixed combustion characteristics in micro porous media combustor. Applied Energy, 160, 802–807. doi: https://doi.org/10.1016/j.apenergy.2014.12.049
  13. Di Stazio, A., Chauveau, C., Dayma, G., Dagaut, P. (2016). Combustion in micro-channels with a controlled temperature gradient. Experimental Thermal and Fluid Science, 73, 79–86. doi: https://doi.org/10.1016/j.expthermflusci.2015.09.020
  14. Taywade, U. W., Deshpande, A. A., Kumar, S. (2013). Thermal performance of a micro combustor with heat recirculation. Fuel Processing Technology, 109, 179–188. doi: https://doi.org/10.1016/j.fuproc.2012.11.002
  15. Altay, H. M., Speth, R. L., Hudgins, D. E., Ghoniem, A. F. (2009). Flame–vortex interaction driven combustion dynamics in a backward-facing step combustor. Combustion and Flame, 156 (5), 1111–1125. doi: https://doi.org/10.1016/j.combustflame.2009.02.003
  16. Baigmohammadi, M., Tabejamaat, S., Farsiani, Y. (2015). Experimental study of the effects of geometrical parameters, Reynolds number, and equivalence ratio on methane–oxygen premixed flame dynamics in non-adiabatic cylinderical meso-scale reactors with the backward facing step. Chemical Engineering Science, 132, 215–233. doi: https://doi.org/10.1016/j.ces.2015.04.008
  17. Roy, V., Majumder, S., Sanyal, D. (2010). Analysis of The Turbulent Fluid Flow in an Axi-Symmetric Sudden Expansion. International Journal of Engineering Science and Technology, 2 (6), 1569–1574.

Downloads

Published

2019-01-25

How to Cite

Sanata, A., Wardana, I. N. G., Yuliati, L., & Sasongko, M. N. (2019). Effect of backward facing step on combustion stability in a constant contact area cylindrical meso­scale combustor. Eastern-European Journal of Enterprise Technologies, 1(8 (97), 51–59. https://doi.org/10.15587/1729-4061.2019.149217

Issue

Section

Energy-saving technologies and equipment