A comparative analysis of AC/DC transfer standards for comparison of national standards

Authors

  • Oleh Velychko State Enterprise “All-Ukrainian State Scientific and Production Centre for Standardization, Metrology, Certification and Protection of Consumer”, (SE “Ukrmetrteststandard”) Metrolohychna str., 4, Kyiv, Ukraine, 03143, Ukraine https://orcid.org/0000-0002-6564-4144
  • Valentyn Isaiev State Enterprise “All-Ukrainian State Scientific and Production Centre for Standardization, Metrology, Certification and Protection of Consumer”, (SE “Ukrmetrteststandard”) Metrolohychna str., 4, Kyiv, Ukraine, 03143, Ukraine https://orcid.org/0000-0001-6763-9392

DOI:

https://doi.org/10.15587/1729-4061.2018.150459

Keywords:

comparison, thermal converter, voltage transfer, travelling standard, uncertainty of measurement

Abstract

The development of standards based on quantum effects, in particular, alternating voltage synthesizers, has not yet allowed defining the metrological characteristics of measuring instruments for alternating voltage up to 1,000 V at a frequency up to 1 MHz. Therefore, a comparative analysis of international comparisons of national standards has summarized the possibilities of metrological support with the use of AC/DC voltage transfer standards.

The conducted analytical and experimental studies give grounds to state the decisive contribution of national metrological institutes in the formation of the modern equivalence level of AC/DC voltage transfer standards. A comparative analysis of the uncertainty of measurements achieved by the leading national metrology institutes has made it possible to distinguish the most accurate type of thermal voltage converters based on the thermocouples connected in series. Such a measuring instrument allows measuring AC/DC transfer difference with an uncertainty of less than 1 μV/V at certain points of the measuring range.

Consideration of the capabilities of the travelling standards to ensure a stable storage of a value of AC/DC voltage transfer difference has indicated the advantage of the thermal converter of an indicated above type, relative to the other types used in the comparisons of AC/DC transfer standards. The calculation of stability coefficients for different types of standards has shown an approximately twofold advantage of thermal converters based on the thermocouple comparing with multi-range thermal comparators on the basis of the root-mean-square voltage sensor. The results of the considered comparisons have shown that there were no advantages of any of the measurement schemes used by the laboratories since no relation has been found between the reported measurement uncertainty and the scheme.

The results of the estimation of the frequency influence of the input voltage on the transformation coefficient of the AC/DC voltage transfer standards of the two types have given the grounds to neglect correcting the contribution of this source of uncertainty. The proposed approach to measuring the AC/DC transfer difference with providing the connection with a direct definition allows us to estimate more appropriately this metrological characteristic in two ways

Author Biographies

Oleh Velychko, State Enterprise “All-Ukrainian State Scientific and Production Centre for Standardization, Metrology, Certification and Protection of Consumer”, (SE “Ukrmetrteststandard”) Metrolohychna str., 4, Kyiv, Ukraine, 03143

Doctor of Technical Sciences, Professor, Director

Scientific and Production Institute of Electromagnetic Measurements

Valentyn Isaiev, State Enterprise “All-Ukrainian State Scientific and Production Centre for Standardization, Metrology, Certification and Protection of Consumer”, (SE “Ukrmetrteststandard”) Metrolohychna str., 4, Kyiv, Ukraine, 03143

Senior Researcher

Research and Development Department of Measurement of Electric Quantities

References

  1. Burroughs, C. J., Dresselhaus, P. D., Rufenacht, A., Olaya, D., Elsbury, M. M., Tang, Y.-H., Benz, S. P. (2011). NIST 10 V Programmable Josephson Voltage Standard System. IEEE Transactions on Instrumentation and Measurement, 60 (7), 2482–2488. doi: https://doi.org/10.1109/tim.2010.2101191
  2. Rufenacht, A., Howe, L. A., Fox, A. E., Schwall, R. E., Dresselhaus, P. D., Burroughs, C. J., Benz, S. P. (2015). Cryocooled 10 V Programmable Josephson Voltage Standard. IEEE Transactions on Instrumentation and Measurement, 64 (6), 1477–1482. doi: https://doi.org/10.1109/tim.2014.2374697
  3. Rufenacht, A., Flowers-Jacobs, N. E., Fox, A. E., Waltman, S. B., Schwall, R. E., Burroughs, C. J. et. al. (2018). DC Comparison of a Programmable Josephson Voltage Standard and a Josephson Arbitrary Waveform Synthesizer. 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018). doi: https://doi.org/10.1109/cpem.2018.8500955
  4. Benz, S. P., Waltman, S. B., Fox, A. E., Dresselhaus, P. D., Rufenacht, A., Underwood, J. M. et. al. (2015). One-Volt Josephson Arbitrary Waveform Synthesizer. IEEE Transactions on Applied Superconductivity, 25 (1), 1–8. doi: https://doi.org/10.1109/tasc.2014.2357760
  5. Rufenacht, A., Flowers-Jacobs, N. E., Fox, A. E., Burroughs, C. J., Dresselhaus, P. D., Benz, S. P. (2016). Direct comparison of a pulse-driven Josephson arbitrary waveform synthesizer and a programmable Josephson voltage standard at 1 volt. 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016). doi: https://doi.org/10.1109/cpem.2016.7540603
  6. Rüfenacht, A., Flowers-Jacobs, N. E., Benz, S. P. (2018). Impact of the latest generation of Josephson voltage standards in ac and dc electric metrology. Metrologia, 55 (5), S152–S173. doi: https://doi.org/10.1088/1681-7575/aad41a
  7. Klonz, M. (2002). CCEM-K6.a: key comparison of ac-dc voltage transfer standards at the lowest attainable level of uncertainty. Metrologia, 39 (1A), 01002–01002. doi: https://doi.org/10.1088/0026-1394/39/1a/2
  8. Halawa, M., Al-Rashid, N. (2010). Performance of Single Junction Thermal Voltage Converter (SJTVC) at 1 MHz via Equivalent Electrical Circuit Simulation. 2010 12th International Conference on Computer Modelling and Simulation. doi: https://doi.org/10.1109/uksim.2010.120
  9. Fujiki, H. (2007). New Thin-Film Multijunction Thermal Converter Design for Improved High-Frequency Performance. IEEE Sensors Journal, 7 (9), 1243–1247. doi: https://doi.org/10.1109/jsen.2007.897966
  10. Everett, W. A. (1994). Calibration: Philosophy in Practice. Everett: Fluke Corporation, 526.
  11. The BIPM key comparison database (KCDB). Available at: http://kcdb.bipm.org/
  12. Chen, S.-F. (2016). Differential sampling measurements of low-frequency sinusoidal waveforms using AC-programmable Josephson voltage standard. 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016). doi: https://doi.org/10.1109/cpem.2016.7540665
  13. Seron, O., Djordjevic, S., Budovsky, I., Hagen, T., Behr, R., Palafox, L. (2012). Precision AC–DC Transfer Measurements With a Josephson Waveform Synthesizer and a Buffer Amplifier. IEEE Transactions on Instrumentation and Measurement, 61 (1), 198–204. doi: https://doi.org/10.1109/tim.2011.2157429
  14. Filipski, P. S., van den Brom, H. E., Houtzager, E. (2012). International comparison of quantum AC voltage standards for frequencies up to 100kHz. Measurement, 45 (9), 2218–2225. doi: https://doi.org/10.1016/j.measurement.2012.03.008
  15. Rufenacht, A., Overney, F., Mortara, A., Jeanneret, B. (2011). Thermal-Transfer Standard Validation of the Josephson-Voltage-Standard-Locked Sine-Wave Synthesizer. IEEE Transactions on Instrumentation and Measurement, 60 (7), 2372–2377. doi: https://doi.org/10.1109/tim.2010.2099931
  16. Kampik, M. (2013). Comparison of Nonquantum Methods for Calibration of the Digital Source of Very-Low-Frequency AC Voltage. IEEE Transactions on Instrumentation and Measurement, 62 (6), 1615–1620. doi: https://doi.org/10.1109/tim.2012.2225960
  17. Budovsky, I. (2010). Final report on APMP.EM-K6.a: APMP international comparison of ac–dc transfer standards at the lowest attainable level of uncertainty. Metrologia, 47 (1A), 01018–01018. doi: https://doi.org/10.1088/0026-1394/47/1a/01018
  18. Campos, S., Filipski, P., Izquierdo, D., Afonso, E., Landim, R. P., Di Lillo, L., Lipe, T. (2009). Final report: SIM regional comparison of ac–dc voltage transfer difference (SIM.EM.K6a, SIM.EM-K9 and SIM.EM-K11). Metrologia, 46 (1A), 01004–01004. doi: https://doi.org/10.1088/0026-1394/46/1a/01004
  19. Velychko, O., Darmenko, Y. (2016). Final report on COOMET key comparison of AC/DC voltage transfer references (COOMET.EM-K6.a). Metrologia, 53 (1A), 01011–01011. doi: https://doi.org/10.1088/0026-1394/53/1a/01011
  20. Budovsky, I., Inglis, B. D. (2001). High-frequency AC-DC differences of NML single-junction thermal voltage converters. IEEE Transactions on Instrumentation and Measurement, 50 (1), 101–105. doi: https://doi.org/10.1109/19.903885
  21. Lipe, T. E. (1996). A reevaluation of the NIST low-frequency standards for AC-DC difference in the voltage range 0.6-100 V. IEEE Transactions on Instrumentation and Measurement, 45 (6), 913–917. doi: https://doi.org/10.1109/19.543985
  22. De Barros e Vasconcellos, R., Poletaeff, A. (2014). Final report on SIM bilateral INMETRO–LNE comparisons SIM.EM-K6.1 and SIM.EM-K9.1: AC–DC voltage transfer difference. Metrologia, 51 (1A), 01001–01001. doi: https://doi.org/10.1088/0026-1394/51/1a/01001
  23. Velychko, O., Isaiev, V. (2017). Research of Metrological Characteristic of the State Primary Standard of the Unit Electric Variable Voltage. Metrology and Insruments, 5 (67), 13–19.
  24. Poletaeff, A. (1999). Automated comparator for accurate AC-DC difference measurements at the BNM-LCIE. IEEE Transactions on Instrumentation and Measurement, 48 (2), 412–414. doi: https://doi.org/10.1109/19.769613
  25. Williams, E. S. (1971). Thermal voltage converters and comparator for very accurate ac voltage measurements. Journal of Research of the National Bureau of Standards, Section C: Engineering and Instrumentation, 75C (3-4), 145. doi: https://doi.org/10.6028/jres.075c.015

Downloads

Published

2018-12-12

How to Cite

Velychko, O., & Isaiev, V. (2018). A comparative analysis of AC/DC transfer standards for comparison of national standards. Eastern-European Journal of Enterprise Technologies, 6(5 (96), 14–24. https://doi.org/10.15587/1729-4061.2018.150459

Issue

Section

Applied physics