Improving efficiency for ensuring data group anonymity by developing an information technology

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.150805

Keywords:

information technology, group anonymity, microfile, fuzzy model, evolutionary algorithm

Abstract

Widespread introduction of methods that ensure anonymity of information about individual groups (teams) of respondents in the field of official statistics is restrained by the lack of relevant industrial information technologies and systems. A three-level client-server architecture of an information technology providing data group anonymity was provided in which clients, application servers and databases are united into a local network to enhance security of primary data. A conceptual data model covering all key components of group anonymity was described. Implementation of the technology based on the Java Enterprise Edition 8 platform, Oracle GlassFish Server application server, MySQL database server and SciLab engineering calculations system wase considered.

The information technology enables provision of group anonymity of data in the event of a threat of its violation by analyzing data of an auxiliary microfile. The technology provides operations for constructing fuzzy group models using a genetic algorithm and modification of a microfile with the help of a mimetic algorithm which enables effective provision of anonymity by introducing minor insignificant distortions into data.

Application of the technology was illustrated by solution of the task of providing anonymity of a military group based on real data of American Society Survey, 2013. It was shown that solving the problem by a team of five specialists has enabled at least two and a half times faster the process of preparation of a microfile than by the use of an existing technology

Author Biographies

Oleg Chertov, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of Applied Mathematics

Dan Tavrov, Private Institution “University “Kyiv School of Economics”” Dmytrivska str., 92-94, Kyiv, Ukraine, 01135

PhD Department of Economics

PhD

Department[C1] of Economics

 [C1]Це офіційна назва кафедри англійською мовою.

References

  1. Duncan, G. T., Elliot, M., Salazar-González, J.-J. (2011). Statistical Confidentiality. Principles and Practice. Springer-Verlag, 212. doi: https://doi.org/10.1007/978-1-4419-7802-8
  2. A Terminology for Talking About Privacy by Data Minimization: Anonymity, Unlinkability, Undetectability, Unobservability, Pseudonymity, and Identity Management, Version v0.34. Available at: http://dud.inf.tu-dresden.de/Anon_Terminology.shtml
  3. Chertov, O. R., Tavrov, D. Y. (2017). Providing group anonymity as a part of CSID data process. Shtuchnyi intelekt, 3-4, 127–138.
  4. Chertov, O., Tavrov, D. (2017). Improving efficiency of providing data group anonymity by automating data modification quality evaluation. Eastern-European Journal of Enterprise Technologies, 5 (4 (89)), 31–39. doi: https://doi.org/10.15587/1729-4061.2017.113046
  5. Chertov, O., Tavrov, D. (2014). Microfiles as a Potential Source of Confidential Information Leakage. Studies in Computational Intelligence, 87–114. doi: https://doi.org/10.1007/978-3-319-08624-8_4
  6. Tavrov, D., Chertov, O. (2016). Evolutionary approach to violating group anonymity using third-party data. SpringerPlus, 5 (1). doi: https://doi.org/10.1186/s40064-016-1692-9
  7. Butz, M. V. (2015). Learning Classifier Systems. Springer Handbook of Computational Intelligence, 961–981. doi: https://doi.org/10.1007/978-3-662-43505-2_47
  8. Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 183.
  9. Valenzuela-Rendón, M. (1991). The Fuzzy Classifier System: Motivations and First Results. Proceedings of Parallel Solving from Nature (PPSN II), 330–334.
  10. Smith, S. F. (1980). A Learning System Based on Genetic Adaptive Algorithms. Pittsburgh: University of Pittsburgh, 214.
  11. Carmona, C. J., González, P., del Jesus, M. J., Herrera, F. (2014). Overview on evolutionary subgroup discovery: analysis of the suitability and potential of the search performed by evolutionary algorithms. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4 (2), 87–103. doi: https://doi.org/10.1002/widm.1118
  12. Ishibuchi, H., Nakashima, T., Murata, T. (1999). Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 29 (5), 601–618. doi: https://doi.org/10.1109/3477.790443
  13. Hundepool, A., de Wolf, P.-P., Bakker, J., Reedijk, A., Franconi, L. et. al. (2018). μ-ARGUS Version 5.1.3. User’s Manual. Available at: http://neon.vb.cbs.nl/casc/Software/MUmanual5.1.3.pdf
  14. Angiuli, O., Waldo, J. (2016). Statistical Tradeoffs between Generalization and Suppression in the De-identification of Large-Scale Data Sets. 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC). doi: https://doi.org/10.1109/compsac.2016.198
  15. Sweeney, L. (2002). K-Anonymity: A Model for Protecting Privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10 (05), 557–570. doi: https://doi.org/10.1142/s0218488502001648
  16. Fienberg, S., McIntyre, J. (2005). Data Swapping: Variations on a Theme by Dalenius and Reiss. Journal of Official Statistics, 21 (2), 309–323.
  17. Evfimievski, A. (2002). Randomization in privacy preserving data mining. ACM SIGKDD Explorations Newsletter, 4 (2), 43–48. doi: https://doi.org/10.1145/772862.772869
  18. Templ, M. (2008). Statistical Disclosure Control for Microdata Using the R-package sdcMicro. Transactions on Data Privacy, 1 (2), 67–85.
  19. Domingo-Ferrer, J., Mateo-Sanz, J. M. (2002). Practical data-oriented microaggregation for statistical disclosure control. IEEE Transactions on Knowledge and Data Engineering, 14 (1), 189–201. doi: https://doi.org/10.1109/69.979982
  20. Chertov, O. R. (2012). Minimizatsiya spotvoren pry formuvanni mikrofailu z zamaskovanymy danymy. Visnyk Skhidnoukrainskoho natsionalnoho universytetu im. V. Dalia, 8 (179), 240–246.
  21. Chertov, O., Tavrov, D. (2012). Providing Group Anonymity Using Wavelet Transform. Lecture Notes in Computer Science, 25–36. doi: https://doi.org/10.1007/978-3-642-25704-9_5
  22. Chertov, O., Tavrov, D. (2016). Two-Phase Memetic Modifying Transformation for Solving the Task of Providing Group Anonymity. Studies in Fuzziness and Soft Computing, 239–253. doi: https://doi.org/10.1007/978-3-319-32229-2_17
  23. Zadeh, L. A. (2013). Toward a restriction-centered theory of truth and meaning (RCT). Information Sciences, 248, 1–14. doi: https://doi.org/10.1016/j.ins.2013.06.003
  24. Neri, F., Cotta, C. (2012). A Primer on Memetic Algorithms. Studies in Computational Intelligence, 43–52. doi: https://doi.org/10.1007/978-3-642-23247-3_4
  25. Goldberg, D. E., Korb, B., Deb, K. (1989). Messy Genetic Algorithms: Motivation, Analysis, and First Results. Complex Systems, 3, 493–530.
  26. Syswerda, G. (1991). Schedule Optimization Using Genetic Algorithms. Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold, 332–349.
  27. Eiben, A. E., Smith, J. E. (2015). Introduction to Evolutionary Computing. Springer-Verlag, 287. doi: https://doi.org/10.1007/978-3-662-44874-8
  28. Brindle, A. (1981). Genetic Algorithms for Function Optimization. Edmonton: University of Alberta, 193.
  29. Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning – I. Information Sciences, 8 (3), 199–249. doi: https://doi.org/10.1016/0020-0255(75)90036-5
  30. Wrobel, S. (1997). An algorithm for multi-relational discovery of subgroups. Lecture Notes in Computer Science, 78–87. doi: https://doi.org/10.1007/3-540-63223-9_108
  31. Lavrač, N., Flach, P., Zupan, B. (1999). Rule Evaluation Measures: A Unifying View. Lecture Notes in Computer Science, 174–185. doi: https://doi.org/10.1007/3-540-48751-4_17
  32. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H. (1995). Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Transactions on Fuzzy Systems, 3 (3), 260–270. doi: https://doi.org/10.1109/91.413232
  33. Syswerda, G. (1989). Uniform Crossover in Genetic Algorithms. Proceedings of the 3rd International Conference on Genetic Algorithms. Morgan Kaufmann Publishers Inc., 2–9.
  34. Olivetti, E., Greiner, S., Avesani, P. (2014). Statistical independence for the evaluation of classifier-based diagnosis. Brain Informatics, 2 (1), 13–19. doi: https://doi.org/10.1007/s40708-014-0007-6
  35. Ruggles, S., Flood, S., Goeken, R., Grover, J., Meyer, E., Pacas, J., Sobek, M. (2018). Integrated Public Use Microdata Series, Version 8.0 [Dataset]. Minneapolis: University of Minnesota. Available at: https://usa.ipums.org/usa/
  36. Demographics. Profile of the Military Community (2012). Available at: http://www.militaryonesource.mil/12038/MOS/Reports/2011_Demographics_Report.pdf

Downloads

Published

2018-12-12

How to Cite

Chertov, O., & Tavrov, D. (2018). Improving efficiency for ensuring data group anonymity by developing an information technology. Eastern-European Journal of Enterprise Technologies, 6(4 (96), 41–56. https://doi.org/10.15587/1729-4061.2018.150805

Issue

Section

Mathematics and Cybernetics - applied aspects