Analysis of the efficiency of spacetime access in the mobile communication systems based on an antenna array
DOI:
https://doi.org/10.15587/1729-4061.2018.150921Keywords:
space-time access, adaptive space-time processing, antenna array, integrated weight coefficientAbstract
We performed analysis of effectiveness of various methods and criteria of space-time processing of the signals by an adaptive antenna array with a view to identifying the algorithm suitable for using in arrangement of space-time access to mobile communication systems. It was shown that all methods are based on the assessment of an integrated vector of weight coefficients, included in the reception tract of every antenna element and controlled by certain algorithms.
It was shown that recursive procedures that make it possible to correct the vector of weight coefficients in the dynamic situation, including non-stationary signal-interference situation, are more constructive for using in problems of space-time access. This is especially important for communications with mobile subscriber stations and allows reducing the time for processing calling signals due to the rapid convergence of recursive procedures.
A comparative analysis of Widrow-Hoff and Kalman-Bucy algorithms was conducted. It was shown that the Kalman-Bucy procedure, in addition to optimality, in complicated signal-interference situation is characterized by maximally short time of convergence to the sustainable state. The convergence of the procedure is ensured on the time interval, allocated for the action of calling signals of subscriber stations in a mobile network.
We proposed the model for studying the influence of initial conditions on the effectiveness of space-time access by the parameter of the convergence rate of the algorithm for adaptive space-time signal processing in an antenna array. It is possible to approximate the vector value to the optimal due to configuration of the integrated vector of weight coefficient based on the use of the information about directions of arrival of calling signals of subscriber stations in a mobile network.
The results of the calculations of the indicator of the signal/(interference + noise) ratio on the convergence pitch for different algorithms of an adaptive antenna array were obtained. It was shown that it was possible to improve essentially the transitive characteristics of the algorithms for a linear four-element adaptive antenna array due to the successful initial choice of the value of the integrated vector of weight coefficients. This made it possible to increase the value of the signal/ (interference + noise) ratio at the outlet of an antenna up to 4 dBReferences
- Monzingo, R. A., Miller, T. U. (1986). Adaptivnye antennye reshetki. Vvedenie v teoriyu. Moscow, 448.
- Balanis, K. A., Ioanides, P. I. (2012). Vvedenie v smart-antenny. Moscow, 200.
- Kolyadenko, Yu. Yu. (2006). Analiz effektivnosti algoritmov adaptivnyh antennyh reshetok v liniyah sotovoy svyazi. Radiotekhnika, 144, 172–181.
- Popovskiy, V. V. (Ed.) (1987). Elektromagnitnaya dostupnost' istochnikov radioizlucheniy. Leningrad, 262.
- Korostelev, A. A. (1987). Prostranstvenno-vremennaya teoriya radiosistem. Moscow, 320.
- Markov, G. T., Sazonov, D. M. (1975). Antenny. Moscow, 528.
- Vendik, O. G., Parnes, M. D. (2001). Antenny s elektricheskim skanirovaniem. Moscow, 352.
- Karavaev, V. V., Sazonov, V. V. (1987). Statisticheskaya teoriya passivnoy lokacii. Moscow, 240.
- Shirman, Ya. D., Manzhos, V. N. (1981). Teoriya i tekhnika obrabotki radiolokacionnoy informacii na fone pomekh. Moscow.
- Kremer, I. Ya. (Ed.) (1984). Prostranstvenno-vremennaya obrabotka signalov. Moscow, 224.
- Uidrou, B., Stirnz, S. (1989). Adaptivnaya obrabotka signalov. Moscow, 440.
- Yarlykov, M. S. (Ed.) (2004). Markovskaya teoriya ocenivaniya v radiotekhnike. Moscow, 504.
- Rodimov, A. P., Popovskiy, V. V. (1984). Statisticheskaya teoriya polyarizacionno-vremennoy obrabotki signalov i pomekh. Moscow, 272.
- Jovanović, A., Lazović, L., Rubežić, V. (2016). Adaptive Array Beamforming Using a Chaotic Beamforming Algorithm. International Journal of Antennas and Propagation, 2016. doi: https://doi.org/10.1155/2016/8354204
- Shahab, S. N., Zainun, A. R., Ali, H. A., Hojabri, M., Noordin, N. H. (2017). MVDR algorithm based linear antenna array performance assessment for adaptive beamforming application. Journal of Engineering Science and Technology, 12 (5), 1366–1385.
- Senapati, A., Roy, J. S. (2017). Adaptive Beamforming in Smart Antenna Using Tchebyscheff Distribution and Variants of Least Mean Square Algorithm. Journal of Engineering Science and Technology, 12 (3), 716–724.
- Singh, H., Jha, R. M. (2012). Trends in Adaptive Array Processing. International Journal of Antennas and Propagation, 2012, 1–20. doi: https://doi.org/10.1155/2012/361768
- Sharma, S. K., Patwary, M., Chatzinotas, S. (2016). Multiple Access Techniques for Next Generation Wireless: Recent Advances and Future Perspectives. EAI Endorsed Transactions on Wireless Spectrum, 2 (7), 151002. doi: https://doi.org/10.4108/eai.19-1-2016.151002
- Song, X., Wang, F., Wang, J., Ren, J. (2015). Robust Recursive Algorithm under Uncertainties via Worst-Case SINR Maximization. Journal of Electrical and Computer Engineering, 2015, 1–8. doi: https://doi.org/10.1155/2015/458521
- Ermolayev, V. T., Flaksman, A. G., Sorokin, I. S. (2013). Regularized estimate of the weight vector of an adaptive antenna array. Radiophysics and Quantum Electronics, 55 (9), 578–586. doi: https://doi.org/10.1007/s11141-013-9395-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Naors Y. Anad Alsaleem, Mohammed A. Kashmoola, Mykola Moskalets
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.