Definition of the thermal and fire-protective properties of ethylene-vinyl acetate copolymer nanocomposites

Authors

  • Lubov Vakhitova L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the National Academy of Sciences of Ukraine Kharkivske shosse str., 50, Kyiv, Ukraine, 02160, Ukraine https://orcid.org/0000-0003-4727-9961
  • Volodymyr Bessarabov Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011, Ukraine https://orcid.org/0000-0003-0637-1729
  • Nadezhda Тaran L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the National Academy of Sciences of Ukraine Kharkivske shosse str., 50, Kyiv, Ukraine, 02160, Ukraine https://orcid.org/0000-0002-4638-3241
  • Andrey Redko L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the National Academy of Sciences of Ukraine Kharkivske shosse str., 50, Kyiv, Ukraine, 02160, Ukraine https://orcid.org/0000-0001-7741-1834
  • Victor Anishchenko L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the National Academy of Sciences of Ukraine Kharkivske shosse str., 50, Kyiv, Ukraine, 02160, Ukraine https://orcid.org/0000-0001-5076-3549
  • Glib Zagoriy Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011, Ukraine https://orcid.org/0000-0002-9362-3121
  • Anatolii Popov L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the National Academy of Sciences of Ukraine Kharkivske shosse str., 50, Kyiv, Ukraine, 02160, Ukraine https://orcid.org/0000-0002-5867-0598

DOI:

https://doi.org/10.15587/1729-4061.2019.154676

Keywords:

organomodified montmorillonite, thermally expanded graphite, nanocomposite, intumescent coatings, hydrocarbon fire

Abstract

To create a fire retardant coating that can be applied in the hydrocarbon fire, the nanocomposites of the ethylene-vinyl acetate (EVA) copolymer with montmorillonite (MMT), thermally expanded graphite (EG) are synthesized and their structure, physicochemical and thermal properties are studied. Using IR spectroscopy and X-ray phase analysis, it is found that the EVA nanocomposites with montmorillonite and nanographite obtained in solution and melt have the same structure.

Thermal-oxidative degradation of the EVA copolymer and nanocomposites on its basis in the temperature range of 100–700 °C is investigated. It is proved that nanoclay and nanographite as a part of nanocomposites increase thermal characteristics of the original polymers. The thermal stability of the studied compounds increases in the series: polymer<polymer-EG<polymer-MMT <polymer-MMT-EG. It is shown that the presence of nanoparticles in the polymer matrix reduces the EVA thermal decomposition rate at a temperature above 450 °C and increases the coke residue mass after the destruction of the initial EVA copolymer at a temperature of 250 °C. The synergistic effect of the MMT/EG mixture on the processes of slowing down the thermal degradation of the EVA copolymer is found.

The effect of organomodified montmorillonite and graphite in the EVA nanocomposites on the thermal destruction of the intumescent system of ammonium polyphosphate/melamine/pentaerythritol is studied. The synergistic effect of the mixture of clay and graphite nanoparticles in a hybrid nanocomposite is revealed. Synergism consists in increased fire resistance of metal structures by almost 20 % compared with the coating containing the polymer-nanoclay or polymer-nanographite nanocomposite.

Based on the results obtained, the intumescent base of fire retardant paint for steel structures, which is recommended for use to increase the fire-resistance rating of metal in the hydrocarbon fire is developed

Author Biographies

Lubov Vakhitova, L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the National Academy of Sciences of Ukraine Kharkivske shosse str., 50, Kyiv, Ukraine, 02160

PhD, Senior Researcher

Department of Research on Nucleophilic Reactions

Volodymyr Bessarabov, Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011

PhD, Associate Professor

Department of Industrial Pharmacy

Nadezhda Тaran, L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the National Academy of Sciences of Ukraine Kharkivske shosse str., 50, Kyiv, Ukraine, 02160

PhD, Senior Researcher

Department of Research on Nucleophilic Reactions

Andrey Redko, L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the National Academy of Sciences of Ukraine Kharkivske shosse str., 50, Kyiv, Ukraine, 02160

PhD, Senior Researcher

Department of Spectrochemical Research

Victor Anishchenko, L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the National Academy of Sciences of Ukraine Kharkivske shosse str., 50, Kyiv, Ukraine, 02160

PhD, Senior Researcher

Department of Spectrochemical Research

Glib Zagoriy, Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011

Doctor of Pharmaceutical Sciences, Professor

Department of Industrial Pharmacy

Anatolii Popov, L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the National Academy of Sciences of Ukraine Kharkivske shosse str., 50, Kyiv, Ukraine, 02160

Doctor of Chemical Sciences, Professor, Director

References

  1. Mariappan, T. (2016). Recent developments of intumescent fire protection coatings for structural steel: A review. Journal of Fire Sciences, 34 (2), 120–163. doi: https://doi.org/10.1177/0734904115626720
  2. Puri, R. G., Khanna, A. S. (2016). Intumescent coatings: A review on recent progress. Journal of Coatings Technology and Research, 14 (1), 1–20. doi: https://doi.org/10.1007/s11998-016-9815-3
  3. Anees, S. M., Dasari, A. (2017). A review on the environmental durability of intumescent coatings for steels. Journal of Materials Science, 53 (1), 124–145. doi: https://doi.org/10.1007/s10853-017-1500-0
  4. Rossi, S., Fedel, M., Petrolli, S., Deflorian, F. (2016). Accelerated weathering and chemical resistance of polyurethane powder coatings. Journal of Coatings Technology and Research, 13 (3), 427–437. doi: https://doi.org/10.1007/s11998-015-9764-2
  5. Hazer, S., Coban, M., Aytac, A. (2017). Effects of the Nanoclay and Intumescent System on the Properties of the Plasticized Polylactic Acid. Acta Physica Polonica A, 132 (3), 634–637. doi: https://doi.org/10.12693/aphyspola.132.634
  6. Hu, Y., Wang, X., Li, J. (2016). Regulating Effect of Exfoliated Clay on Intumescent Char Structure and Flame Retardancy of Polypropylene Composites. Industrial & Engineering Chemistry Research, 55 (20), 5892–5901. doi: https://doi.org/10.1021/acs.iecr.6b00480
  7. Ustinov, A., Zybina, O., Tanklevsky, L., Lebedev, V., Andreev, A. (2018). Intumescent coatings with improved properties for high-rise construction. E3S Web of Conferences, 33, 02039. doi: https://doi.org/10.1051/e3sconf/20183302039
  8. Yew, M. C., Ramli Sulong, N. H., Yew, M. K., Amalina, M. A., Johan, M. R. (2014). Investigation on solvent-borne intumescent flame-retardant coatings for steel. Materials Research Innovations, 18 (sup6), S6-384–S6-388. doi: https://doi.org/10.1179/1432891714z.0000000001026
  9. Md Nasir, K., Ramli Sulong, N. H., Johan, M. R., Afifi, A. M. (2018). An investigation into waterborne intumescent coating with different fillers for steel application. Pigment & Resin Technology, 47 (2), 142–153. doi: https://doi.org/10.1108/prt-09-2016-0089
  10. Kiliaris, P., Papaspyrides, C. D. (2010). Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Progress in Polymer Science, 35 (7), 902–958. doi: https://doi.org/10.1016/j.progpolymsci.2010.03.001
  11. Wang, J. (2015). The protective effects and aging process of the topcoat of intumescent fire-retardant coatings applied to steel structures. Journal of Coatings Technology and Research, 13 (1), 143–157. doi: https://doi.org/10.1007/s11998-015-9733-9
  12. Mochane, M. J., Luyt, A. S. (2015). Synergistic effect of expanded graphite, diammonium phosphate and Cloisite 15A on flame retardant properties of EVA and EVA/wax phase-change blends. Journal of Materials Science, 50 (9), 3485–3494. doi: https://doi.org/10.1007/s10853-015-8909-0
  13. Dittrich, B., Wartig, K.-A., Mülhaupt, R., Schartel, B. (2014). Flame-Retardancy Properties of Intumescent Ammonium Poly(Phosphate) and Mineral Filler Magnesium Hydroxide in Combination with Graphene. Polymers, 6 (11), 2875–2895. doi: https://doi.org/10.3390/polym6112875
  14. Aziz, H., Ahmad, F. (2016). Effects from nano-titanium oxide on the thermal resistance of an intumescent fire retardant coating for structural applications. Progress in Organic Coatings, 101, 431–439. doi: https://doi.org/10.1016/j.porgcoat.2016.09.017
  15. Duquesne, S., Bachelet, P., Bellayer, S., Bourbigot, S., Mertens, W. (2013). Influence of inorganic fillers on the fire protection of intumescent coatings. Journal of Fire Sciences, 31 (3), 258–275. doi: https://doi.org/10.1177/0734904112467291
  16. Wu, H., Krifa, M., Koo, J. H. (2014). Flame retardant polyamide 6/nanoclay/intumescent nanocomposite fibers through electrospinning. Textile Research Journal, 84 (10), 1106–1118. doi: https://doi.org/10.1177/0040517513515314
  17. Newton, A., Kwon, K., Cheong, D.-K. (2016). Edge Structure of Montmorillonite from Atomistic Simulations. Minerals, 6 (2), 25. doi: https://doi.org/10.3390/min6020025
  18. Vakhitova, L., Drizhd, V., Тaran, N., Кalafat, K., Bessarabov, V. (2016). The effect of organoclays on the fire-proof efficiency of intumescent coatings. Eastern-European Journal of Enterprise Technologies, 6 (10 (84)), 10–16. doi: https://doi.org/10.15587/1729-4061.2016.84391
  19. Wang, X., Kalali, E. N., Wang, D.-Y. (2016). Two-Dimensional Inorganic Nanomaterials: A Solution to Flame Retardant Polymers. Nano Advances. doi: https://doi.org/10.22180/na155
  20. Nwabueze, D. O. (2016). Liquid Hydrocarbon Storage Tank Fires – How Prepared is your Facility? Сhemical Engineering Transactions, 48, 301–306. doi: http://doi.org/10.3303/CET1648051
  21. Han, Z., Fina, A., Malucelli, G., Camino, G. (2010). Testing fire protective properties of intumescent coatings by in-line temperature measurements on a cone calorimeter. Progress in Organic Coatings, 69 (4), 475–480. doi: https://doi.org/10.1016/j.porgcoat.2010.09.001
  22. Ucankus, G., Ercan, M., Uzunoglu, D., Culha, M. (2018). Methods for preparation of nanocomposites in environmental remediation. New Polymer Nanocomposites for Environmental Remediation, 1–28. doi: https://doi.org/10.1016/b978-0-12-811033-1.00001-9
  23. Müller, K., Bugnicourt, E., Latorre, M., Jorda, M., Echegoyen Sanz, Y., Lagaron, J. et. al. (2017). Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials, 7 (4), 74. doi: https://doi.org/10.3390/nano7040074
  24. Dabrowski, F., Le Bras, M., Cartier, L., Bourbigot, S. (2001). The Use of Clay in an EVA-Based Intumescent Formulation. Comparison with the Intumescent Formulation Using Polyamide-6 Clay Nanocomposite As Carbonisation Agent. Journal of Fire Sciences, 19 (3), 219–241. doi: https://doi.org/10.1106/wb1v-x0c6-g5eb-tc3j
  25. Cai, Y., Hu, Y., Song, L., Lu, H., Chen, Z., Fan, W. (2006). Preparation and characterizations of HDPE–EVA alloy/OMT nanocomposites/paraffin compounds as a shape stabilized phase change thermal energy storage material. Thermochimica Acta, 451 (1-2), 44–51. doi: https://doi.org/10.1016/j.tca.2006.08.015

Downloads

Published

2019-01-22

How to Cite

Vakhitova, L., Bessarabov, V., Тaran N., Redko, A., Anishchenko, V., Zagoriy, G., & Popov, A. (2019). Definition of the thermal and fire-protective properties of ethylene-vinyl acetate copolymer nanocomposites. Eastern-European Journal of Enterprise Technologies, 1(6 (97), 13–20. https://doi.org/10.15587/1729-4061.2019.154676

Issue

Section

Technology organic and inorganic substances