Definition of the thermal and fire-protective properties of ethylene-vinyl acetate copolymer nanocomposites
DOI:
https://doi.org/10.15587/1729-4061.2019.154676Keywords:
organomodified montmorillonite, thermally expanded graphite, nanocomposite, intumescent coatings, hydrocarbon fireAbstract
To create a fire retardant coating that can be applied in the hydrocarbon fire, the nanocomposites of the ethylene-vinyl acetate (EVA) copolymer with montmorillonite (MMT), thermally expanded graphite (EG) are synthesized and their structure, physicochemical and thermal properties are studied. Using IR spectroscopy and X-ray phase analysis, it is found that the EVA nanocomposites with montmorillonite and nanographite obtained in solution and melt have the same structure.
Thermal-oxidative degradation of the EVA copolymer and nanocomposites on its basis in the temperature range of 100–700 °C is investigated. It is proved that nanoclay and nanographite as a part of nanocomposites increase thermal characteristics of the original polymers. The thermal stability of the studied compounds increases in the series: polymer<polymer-EG<polymer-MMT <polymer-MMT-EG. It is shown that the presence of nanoparticles in the polymer matrix reduces the EVA thermal decomposition rate at a temperature above 450 °C and increases the coke residue mass after the destruction of the initial EVA copolymer at a temperature of 250 °C. The synergistic effect of the MMT/EG mixture on the processes of slowing down the thermal degradation of the EVA copolymer is found.
The effect of organomodified montmorillonite and graphite in the EVA nanocomposites on the thermal destruction of the intumescent system of ammonium polyphosphate/melamine/pentaerythritol is studied. The synergistic effect of the mixture of clay and graphite nanoparticles in a hybrid nanocomposite is revealed. Synergism consists in increased fire resistance of metal structures by almost 20 % compared with the coating containing the polymer-nanoclay or polymer-nanographite nanocomposite.
Based on the results obtained, the intumescent base of fire retardant paint for steel structures, which is recommended for use to increase the fire-resistance rating of metal in the hydrocarbon fire is developedReferences
- Mariappan, T. (2016). Recent developments of intumescent fire protection coatings for structural steel: A review. Journal of Fire Sciences, 34 (2), 120–163. doi: https://doi.org/10.1177/0734904115626720
- Puri, R. G., Khanna, A. S. (2016). Intumescent coatings: A review on recent progress. Journal of Coatings Technology and Research, 14 (1), 1–20. doi: https://doi.org/10.1007/s11998-016-9815-3
- Anees, S. M., Dasari, A. (2017). A review on the environmental durability of intumescent coatings for steels. Journal of Materials Science, 53 (1), 124–145. doi: https://doi.org/10.1007/s10853-017-1500-0
- Rossi, S., Fedel, M., Petrolli, S., Deflorian, F. (2016). Accelerated weathering and chemical resistance of polyurethane powder coatings. Journal of Coatings Technology and Research, 13 (3), 427–437. doi: https://doi.org/10.1007/s11998-015-9764-2
- Hazer, S., Coban, M., Aytac, A. (2017). Effects of the Nanoclay and Intumescent System on the Properties of the Plasticized Polylactic Acid. Acta Physica Polonica A, 132 (3), 634–637. doi: https://doi.org/10.12693/aphyspola.132.634
- Hu, Y., Wang, X., Li, J. (2016). Regulating Effect of Exfoliated Clay on Intumescent Char Structure and Flame Retardancy of Polypropylene Composites. Industrial & Engineering Chemistry Research, 55 (20), 5892–5901. doi: https://doi.org/10.1021/acs.iecr.6b00480
- Ustinov, A., Zybina, O., Tanklevsky, L., Lebedev, V., Andreev, A. (2018). Intumescent coatings with improved properties for high-rise construction. E3S Web of Conferences, 33, 02039. doi: https://doi.org/10.1051/e3sconf/20183302039
- Yew, M. C., Ramli Sulong, N. H., Yew, M. K., Amalina, M. A., Johan, M. R. (2014). Investigation on solvent-borne intumescent flame-retardant coatings for steel. Materials Research Innovations, 18 (sup6), S6-384–S6-388. doi: https://doi.org/10.1179/1432891714z.0000000001026
- Md Nasir, K., Ramli Sulong, N. H., Johan, M. R., Afifi, A. M. (2018). An investigation into waterborne intumescent coating with different fillers for steel application. Pigment & Resin Technology, 47 (2), 142–153. doi: https://doi.org/10.1108/prt-09-2016-0089
- Kiliaris, P., Papaspyrides, C. D. (2010). Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Progress in Polymer Science, 35 (7), 902–958. doi: https://doi.org/10.1016/j.progpolymsci.2010.03.001
- Wang, J. (2015). The protective effects and aging process of the topcoat of intumescent fire-retardant coatings applied to steel structures. Journal of Coatings Technology and Research, 13 (1), 143–157. doi: https://doi.org/10.1007/s11998-015-9733-9
- Mochane, M. J., Luyt, A. S. (2015). Synergistic effect of expanded graphite, diammonium phosphate and Cloisite 15A on flame retardant properties of EVA and EVA/wax phase-change blends. Journal of Materials Science, 50 (9), 3485–3494. doi: https://doi.org/10.1007/s10853-015-8909-0
- Dittrich, B., Wartig, K.-A., Mülhaupt, R., Schartel, B. (2014). Flame-Retardancy Properties of Intumescent Ammonium Poly(Phosphate) and Mineral Filler Magnesium Hydroxide in Combination with Graphene. Polymers, 6 (11), 2875–2895. doi: https://doi.org/10.3390/polym6112875
- Aziz, H., Ahmad, F. (2016). Effects from nano-titanium oxide on the thermal resistance of an intumescent fire retardant coating for structural applications. Progress in Organic Coatings, 101, 431–439. doi: https://doi.org/10.1016/j.porgcoat.2016.09.017
- Duquesne, S., Bachelet, P., Bellayer, S., Bourbigot, S., Mertens, W. (2013). Influence of inorganic fillers on the fire protection of intumescent coatings. Journal of Fire Sciences, 31 (3), 258–275. doi: https://doi.org/10.1177/0734904112467291
- Wu, H., Krifa, M., Koo, J. H. (2014). Flame retardant polyamide 6/nanoclay/intumescent nanocomposite fibers through electrospinning. Textile Research Journal, 84 (10), 1106–1118. doi: https://doi.org/10.1177/0040517513515314
- Newton, A., Kwon, K., Cheong, D.-K. (2016). Edge Structure of Montmorillonite from Atomistic Simulations. Minerals, 6 (2), 25. doi: https://doi.org/10.3390/min6020025
- Vakhitova, L., Drizhd, V., Тaran, N., Кalafat, K., Bessarabov, V. (2016). The effect of organoclays on the fire-proof efficiency of intumescent coatings. Eastern-European Journal of Enterprise Technologies, 6 (10 (84)), 10–16. doi: https://doi.org/10.15587/1729-4061.2016.84391
- Wang, X., Kalali, E. N., Wang, D.-Y. (2016). Two-Dimensional Inorganic Nanomaterials: A Solution to Flame Retardant Polymers. Nano Advances. doi: https://doi.org/10.22180/na155
- Nwabueze, D. O. (2016). Liquid Hydrocarbon Storage Tank Fires – How Prepared is your Facility? Сhemical Engineering Transactions, 48, 301–306. doi: http://doi.org/10.3303/CET1648051
- Han, Z., Fina, A., Malucelli, G., Camino, G. (2010). Testing fire protective properties of intumescent coatings by in-line temperature measurements on a cone calorimeter. Progress in Organic Coatings, 69 (4), 475–480. doi: https://doi.org/10.1016/j.porgcoat.2010.09.001
- Ucankus, G., Ercan, M., Uzunoglu, D., Culha, M. (2018). Methods for preparation of nanocomposites in environmental remediation. New Polymer Nanocomposites for Environmental Remediation, 1–28. doi: https://doi.org/10.1016/b978-0-12-811033-1.00001-9
- Müller, K., Bugnicourt, E., Latorre, M., Jorda, M., Echegoyen Sanz, Y., Lagaron, J. et. al. (2017). Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials, 7 (4), 74. doi: https://doi.org/10.3390/nano7040074
- Dabrowski, F., Le Bras, M., Cartier, L., Bourbigot, S. (2001). The Use of Clay in an EVA-Based Intumescent Formulation. Comparison with the Intumescent Formulation Using Polyamide-6 Clay Nanocomposite As Carbonisation Agent. Journal of Fire Sciences, 19 (3), 219–241. doi: https://doi.org/10.1106/wb1v-x0c6-g5eb-tc3j
- Cai, Y., Hu, Y., Song, L., Lu, H., Chen, Z., Fan, W. (2006). Preparation and characterizations of HDPE–EVA alloy/OMT nanocomposites/paraffin compounds as a shape stabilized phase change thermal energy storage material. Thermochimica Acta, 451 (1-2), 44–51. doi: https://doi.org/10.1016/j.tca.2006.08.015
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Lubov Vakhitova, Volodymyr Bessarabov, Nadezhda Тaran, Andrey Redko, Victor Anishchenko, Glib Zagoriy, Anatolii Popov
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.