Revealing the effect of decreased energy intensity of grinding in a tumbling mill during self-excitation of auto-oscillations of the intrachamber fill

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.155461

Keywords:

tumbling mill, intrachamber fill, impact action, auto-oscillation self-excitation, energy intensity of grinding

Abstract

We have investigated a possibility to perform comparative evaluation of the effectiveness of grinding process in a tumbling mill under conventional steady and self-excited auto-oscillatory flow modes of the intrachamber fill.

A mathematical model for the parameters of impact influence of the milling fill on the ground material has been constructed. We applied an analytical-experimental method to visually analyze flow patterns in the cross-section of a rotating chamber.

Numerically, by using approximate procedures, we have established a dynamic effect of increasing mean sums of vertical components in impact pulses and mean sums of power of such components at self-excitation of auto-oscillations.

The technological effect has been experimentally established of a significant decrease in energy intensity and a certain increase in productivity of the identified self-oscillatory grinding process, compared with the characteristics of conventional steady-state process. This involved a sieve analysis of the ground product, as well as measuring the fill flow turnover and the power of a drum rotation drive.

The example considered was the process of grinding cement clinker at a degree of filling the chamber with a fill of 0.45, at a relative size of ball grinding elements of 0.026, while the gaps between grinding bodies were completely filled with the ground material. It was established that at auto-oscillation self-excitation the grinding energy intensity reduces by 27.2 %, while performance increases by 6.7 %.

The effects established in this work make it possible to predict the rational parameters for aself-oscillatory process of grinding in a tumbling mill

Author Biographies

Kateryna Deineka, Technical College National University of Water and Environmental Engineering Soborna str., 11, Rivne, Ukraine, 33028

PhD

Yurii Naumenko, National University of Water and Environmental Engineering Soborna str., 11, Rivne, Ukraine, 33028

Doctor of Technical Sciences, Associate Professor

Department of Construction, Road, Reclamation, Agricultural Machines and Equipment

References

  1. Naumenko, Yu. V. (1999). The antitorque moment in a partially filled horizontal cylinder. Theoretical Foundations of Chemical Engineering, 33 (1), 91–95.
  2. Naumenko, Yu. V. (2000). Determination of rational rotation speeds of horizontal drum machines. Metallurgical and Mining Industry, 5, 89–92.
  3. Naumenko, Y. (2017). Modeling of fracture surface of the quasi solid-body zone of motion of the granular fill in a rotating chamber. Eastern-European Journal of Enterprise Technologies, 2 (1 (86)), 50–57. doi: https://doi.org/10.15587/1729-4061.2017.96447
  4. Naumenko, Y., Sivko, V. (2017). The rotating chamber granular fill shear layer flow simulation. Eastern-European Journal of Enterprise Technologies, 4 (7 (88)), 57–64. doi: https://doi.org/10.15587/1729-4061.2017.107242
  5. Naumenko, Y. (2017). Modeling a flow pattern of the granular fill in the cross section of a rotating chamber. Eastern-European Journal of Enterprise Technologies, 5 (1 (89)), 59–69. doi: https://doi.org/10.15587/1729-4061.2017.110444
  6. Jiang, S., Ye, Y., Tan, Y., Liu, S., Liu, J., Zhang, H., Yang, D. (2018). Discrete element simulation of particle motion in ball mills based on similarity. Powder Technology, 335, 91–102. doi: https://doi.org/10.1016/j.powtec.2018.05.012
  7. Usman, H., Taylor, P., Spiller, D. E. (2017). The effects of lifter configurations and mill speeds on the mill power draw and performance. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.4974432
  8. Powell, M. S., Hilden, M. M., Weerasekara, N., Yahyaei, M., Toor, P., Franke, J., Bird, M. (2012). A more holistic view of mill liner management. 11th AusIMM Mill Operators’ Conference, 95–104.
  9. Xu, L., Luo, K., Zhao, Y. (2018). Numerical prediction of wear in SAG mills based on DEM simulations. Powder Technology, 329, 353–363. doi: https://doi.org/10.1016/j.powtec.2018.02.004
  10. Ebrahimi-Nejad, S., Fooladi-Mahani, M. (2009). Optimizing the characteristics of the motion of steel balls and their impact on shell liners in SAG mills. Iranian Journal of Mechanical Engineering, 10 (1), 5–22.
  11. Wu, Q., Bai, Y., Zhang, J. G., Dong, H., Ye, X. (2014). Characteristic analysis on process of grinding ball impacting charge in ball mil. Mining and Processing Equipment, 1.
  12. Tavares, L. M. (2017). A Review of Advanced Ball Mill Modelling. KONA Powder and Particle Journal, 34, 106–124. doi: https://doi.org/10.14356/kona.2017015
  13. Powell, M. S., Govender, I., McBride, A. T. (2008). Applying DEM outputs to the unified comminution model. Minerals Engineering, 21 (11), 744–750. doi: https://doi.org/10.1016/j.mineng.2008.06.010
  14. Tavares, L. M., de Carvalho, R. M. (2009). Modeling breakage rates of coarse particles in ball mills. Minerals Engineering, 22 (7-8), 650–659. doi: https://doi.org/10.1016/j.mineng.2009.03.015
  15. McElroy, L., Bao, J., Yang, R. Y., Yu, A. B. (2009). Soft-sensors for prediction of impact energy in horizontal rotating drums. Powder Technology, 195 (3), 177–183. doi: https://doi.org/10.1016/j.powtec.2009.05.030
  16. Weerasekara, N. S., Powell, M. S., Cleary, P. W., Tavares, L. M., Evertsson, M., Morrison, R. D. et. al. (2013). The contribution of DEM to the science of comminution. Powder Technology, 248, 3–24. doi: https://doi.org/10.1016/j.powtec.2013.05.032
  17. Weerasekara, N. S., Liu, L. X., Powell, M. S. (2016). Estimating energy in grinding using DEM modelling. Minerals Engineering, 85, 23–33. doi: https://doi.org/10.1016/j.mineng.2015.10.013
  18. Zhen-Xu, Sun, J., Cheng, H. (2018). Study on the influence of liner parameters on the power of ball mill and impact energy of grinding ball. IOP Conference Series: Earth and Environmental Science, 153 (2), 022027. doi: https://doi.org/10.1088/1755-1315/153/2/022027
  19. Yahyaei, M., Weerasekara, N. S., Powell, M. S. (2014). Impact of mill size on low-energy surface damage. XXVII International Mineral Processing Congress – IMPC 2014: Conference Proceedings, 53–62.
  20. Razavi-Tousi, S. S., Szpunar, J. A. (2015). Effect of ball size on steady state of aluminum powder and efficiency of impacts during milling. Powder Technology, 284, 149–158. doi: https://doi.org/10.1016/j.powtec.2015.06.035
  21. Bonfils, B., Ballantyne, G. R., Powell, M. S. (2016). Developments in incremental rock breakage testing methodologies and modelling. International Journal of Mineral Processing, 152, 16–25. doi: https://doi.org/10.1016/j.minpro.2016.04.010
  22. Akhondizadeh, M., Rezaeizadeh, M. (2016). Experimental investigation of the effect of energy on the ore breakage. Mechanics & Industry, 18 (1), 113. doi: https://doi.org/10.1051/meca/2016050
  23. Akhondizadeh, M., Rezaeizadeh, M. (2018). Effect of specimen size and ball size on breakage throughput in the drop-weight test. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 095440891876529. doi: https://doi.org/10.1177/0954408918765293
  24. Tuzcu, E. T., Rajamani, R. K. (2011). Modeling breakage rates in mills with impact energy spectra and ultra fast load cell data. Minerals Engineering, 24 (3-4), 252–260. doi: https://doi.org/10.1016/j.mineng.2010.08.017
  25. Crespo, E. F. (2011). Application of particle fracture energy distributions to ball milling kinetics. Powder Technology, 210 (3), 281–287. doi: https://doi.org/10.1016/j.powtec.2011.03.030
  26. Pérez-Alonso, C. A., Delgadillo, J. A. (2013). DEM-PBM approach to predicting particle size distribution in tumbling mills. Mining, Metallurgy & Exploration, 30 (3), 145–150. doi: https://doi.org/10.1007/bf03402260
  27. Tavares, L. M., Cavalcanti, P. P., de Carvalho, R. M., da Silveira, M. W., Bianchi, M., Otaviano, M. (2018). Fracture probability and fragment size distribution of fired Iron ore pellets by impact. Powder Technology, 336, 546–554. doi: https://doi.org/10.1016/j.powtec.2018.06.036
  28. Yahyaei, M., Banisi, S. (2010). Spreadsheet-based modeling of liner wear impact on charge motion in tumbling mills. Minerals Engineering, 23 (15), 1213–1219. doi: https://doi.org/10.1016/j.mineng.2010.08.013
  29. Powell, M. S., Weerasekara, N. S., Cole, S., LaRoche, R. D., Favier, J. (2011). DEM modelling of liner evolution and its influence on grinding rate in ball mills. Minerals Engineering, 24 (3-4), 341–351. doi: https://doi.org/10.1016/j.mineng.2010.12.012
  30. Ashrafizadeh, H., Ashrafizadeh, F. (2012). A numerical 3D simulation for prediction of wear caused by solid particle impact. Wear, 276-277, 75–84. doi: https://doi.org/10.1016/j.wear.2011.12.003
  31. Akhondizadeh, M., Fooladi Mahani, M., Mansouri, S. H., Rezaeizadeh, M. (2013). A computational wear model of the oblique impact of a ball on a flat plate. Journal of Solid Mechanics, 5 (2), 107–115.
  32. Akhondizadeh, M., Fooladi Mahani, M., Rezaeizadeh, M., Mansouri, S. H. (2014). Experimental investigation of the impact wear. Mechanics & Industry, 15 (1), 39–44. doi: https://doi.org/10.1051/meca/2014006
  33. Akhondizadech, M., Mahani, M. F., Mansouri, S. H., Rezaeizadech, M. (2015). A new procedure of impact wear evaluation of mill liner. International Journal of Engineering (IJE), TRANSACTIONS A: Basics, 28 (4), 593–598.
  34. Akhondizadeh, M., Fooladi Mahani, M., Rezaeizadeh, M., Mansouri, S. (2016). Prediction of tumbling mill liner wear: Abrasion and impact effects. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 230 (10), 1310–1320. doi: https://doi.org/10.1177/1350650116635424
  35. Deineka, K. Y., Naumenko, Y. V. (2018). The tumbling mill rotation stability. Scientific Bulletin of National Mining University, 1, 60–68. doi: https://doi.org/10.29202/nvngu/2018-1/10

Downloads

Published

2019-02-04

How to Cite

Deineka, K., & Naumenko, Y. (2019). Revealing the effect of decreased energy intensity of grinding in a tumbling mill during self-excitation of auto-oscillations of the intrachamber fill. Eastern-European Journal of Enterprise Technologies, 1(1), 6–15. https://doi.org/10.15587/1729-4061.2019.155461

Issue

Section

Engineering technological systems