Effect of austenite temperature and holding time to impact energy and wear on HRP steel

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.156798

Keywords:

brittle, ductility, hardness, heating, holding, impact, quench, temper, water, wear

Abstract

Quenched and Tempered Steel is classified as high strength and hardness steel mostly used for armor steel. Hardness and wear stability is essential for steel armor quality standards. On the other hand, austenitization and tempering temperature affect the impact value of the energy absorbed and the Quenched and Tempered Steel wear resistance value. This study aims to evaluate the effects of austenitization and holding time on energy and hardness of Hot Rolled Plate Steel. The research material is a hot roller plate made by Krakatau Steel Indonesia Company Limited with a carbon content of about 0.29 %. The method used was heating of three specimens at 900 (held 45 minutes), 900 (held 30 minutes), and 900 (held 15 minutes), and all of them cooled into the water when the end of heating. Three specimens were heated at 885 (for 45 minutes), 885 (for 30 minutes), and 885 (for 15 minutes) and cooled into the water. Three specimens were heated at 870 (kept 45 minutes) 870 (held 30 minutes), and 870 (kept 15 minutes) and cooled into water. Then the final cooling of the nine specimens was heated at 150 for 30 minutes and cooled to the atmosphere. Five specimens tested for the hardness of Charpy and Vickers. Then arranged into an orthogonal matrix; calculate degrees of freedom; signal to noise ratio, quadratic parameters; average squared response; the ratio between the average response of the square of the source and the error; contribution parameters; predictive value and confidence interval. From the calculation above, the heat treatment parameters have a strong influence on the energy impact and the specific wear obtained. The most influential parameter on the energy impact is the tempering temperature because this parameter is softening caused by a reduction in residual stress due to the previous cooling process. The fine-grain structure increases strength and the energy impact directly

Author Biographies

Yurianto Yurianto, Diponegoro University Jl. Prof. Soedarto No.13, Tembalang, Kec. Tembalang, Kota Semarang, Jawa Tengah, Indonesia, 50275

Doctor of Technical Sciences, Associate Professor

Department of Mechanical Engineering

Agus Suprihanto, Diponegoro University Jl. Prof. Soedarto No.13, Tembalang, Kec. Tembalang, Kota Semarang, Jawa Tengah, Indonesia, 50275

Doctor of Technical Sciences, Associate Professor

Department of Mechanical Engineering

Sumar Hadi Suryo, Diponegoro University Jl. Prof. Soedarto No.13, Tembalang, Kec. Tembalang, Kota Semarang, Jawa Tengah, Indonesia, 50275

Master of Technical Sciences, Lecturer

Department of Mechanical Engineering

Yusuf Umardani, Diponegoro University Jl. Prof. Soedarto No.13, Tembalang, Kec. Tembalang, Kota Semarang, Jawa Tengah, Indonesia, 50275

Master of Technical Sciences, Lecturer

Department of Mechanical Engineering

Padang Yanuar, Semarang State Polytechnic Jalan. Prof. Soedarto, SH., Semarang, Central of Jawa, Indonesia

Master of Technical Sciences, Lecturer

Department of Mechanical Engineering

References

  1. Madhusudhan Reddy, G., Mohandas, T., Papukutty, K. (1999). Enhancement of ballistic capabilities of soft welds through hardfacing. International Journal of Impact Engineering, 22 (8), 775–791. doi: https://doi.org/10.1016/s0734-743x(99)00020-2
  2. Magudeeswaran, G., Balasubramanian, V., Sathyanarayanan, S., Reddy, G. M., Moitra, A., Venugopal, S., Sasikala, G. (2010). Dynamic fracture toughness of armour grade quenched and tempered steel joints fabricated using low hydrogen ferritic fillers. Journal of Iron and Steel Research International, 17 (5), 51–56. doi: https://doi.org/10.1016/s1006-706x(10)60099-4
  3. Magudeeswaran, G., Balasubramanian, V., Madhusudhanreddy, G. (2008). Hydrogen induced cold cracking studies on armour grade high strength, quenched and tempered steel weldments. International Journal of Hydrogen Energy, 33 (7), 1897–1908. doi: https://doi.org/10.1016/j.ijhydene.2008.01.035
  4. Magudeeswaran, G., Balasubramanian, V., Madhusudhan Reddy, G. (2009). Effect of Welding Consumables on Fatigue Performance of Shielded Metal Arc Welded High Strength, Q&T Steel Joints. Journal of Materials Engineering and Performance, 18 (1), 49–56. doi: https://doi.org/10.1007/s11665-008-9253-1
  5. Madhusudhan Reddy, G., Mohandas, T. (1996). Ballistic performance of high-strengh low-alloy steel weldments. Journal of Materials Processing Technology, 57 (1-2), 23–30. doi: https://doi.org/10.1016/0924-0136(95)02041-1
  6. Magudeeswaran, G., Balasubramanian, V., Madhusudhan Reddy, G., Gopalakrishnan, G. (2009). Experimental Investigation on the Performance of Armour Grade Q&T Steel Joints Fabricated by Flux Cored Arc Welding with Low Hydrogen Ferritic Consumables. J. Mater. Sci. Technol., 25 (5), 583–591.
  7. Khani Sanij, M. H., Ghasemi Banadkouki, S. S., Mashreghi, A. R., Moshrefifar, M. (2012). The effect of single and double quenching and tempering heat treatments on the microstructure and mechanical properties of AISI 4140 steel. Materials & Design, 42, 339–346. doi: https://doi.org/10.1016/j.matdes.2012.06.017
  8. Wei, M. X., Wang, S. Q., Wang, L., Cui, X. H., Chen, K. M. (2011). Effect of tempering conditions on wear resistance in various wear mechanisms of H13 steel. Tribology International, 44 (7-8), 898–905. doi: https://doi.org/10.1016/j.triboint.2011.03.005
  9. Behrens, B.-A., Yilkiran, D., Schöler, S., Özkaya, F., Hübner, S., Möhwald, K. (2018). Wear investigation of selective α-Fe2O3 oxide layers generated on surfaces for dry sheet metal forming. Procedia Manufacturing, 15, 923–930. doi: https://doi.org/10.1016/j.promfg.2018.07.404
  10. Balakrishnan, M., Balasubramanian, V., Madhusudhan Reddy, G. (2013). Effect of hardfaced interlayer thickness on ballistic performance of armour steel welds. Materials & Design, 44, 59–68. doi: https://doi.org/10.1016/j.matdes.2012.06.010
  11. Demir, T., Übeyli, M., Yıldırım, R. O. (2008). Effect of Hardness on the Ballistic Impact Behavior of High-Strength Steels Against 7.62-mm Armor Piercing Projectiles. Journal of Materials Engineering and Performance, 18 (2), 145–153. doi: https://doi.org/10.1007/s11665-008-9288-3
  12. Lee, W.-S., Su, T.-T. (1999). Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions. Journal of Materials Processing Technology, 87 (1-3), 198–206. doi: https://doi.org/10.1016/s0924-0136(98)00351-3
  13. Nishibata, T., Kojima, N. (2013). Effect of quenching rate on hardness and microstructure of hot-stamped steel. Journal of Alloys and Compounds, 577, S549–S554. doi: https://doi.org/10.1016/j.jallcom.2011.12.154
  14. Wang, X., Di, H., Zhang, C., Du, L., Dong, X. (2012). Wettability of 780 MPa Super-High Strength Heavy-Duty Truck Crossbeam Steel. Journal of Iron and Steel Research International, 19 (6), 64–69. doi: https://doi.org/10.1016/s1006-706x(12)60129-0
  15. Zdravecká, E., Tkáčová, J., Ondáč, M. (2014). Effect of microstructure factors on abrasion resistance of high-strength steels. Research in Agricultural Engineering, 60 (3), 115–120. doi: https://doi.org/10.17221/20/2013-rae
  16. Zheng, H., Wu, K. M., Isayev, O., Hress, O., Yershov, S., Tsepelev, V. (2019). Effect of heat treatment parameters on the microstructure of quenching–partitioning–tempering steel. Heat Treatment and Surface Engineering, 1 (1-2), 83–86. doi: https://doi.org/10.1080/25787616.2018.1560168
  17. Wang, S. (2009). Metal Heat Treatment Principles and Process. Harbin industrial of technology press. Harbin.
  18. Hosmani, S. D., Kurhatti, R. V., Kabadi, V. K. (2017). Wear Behavior of Spherodized Cementite in Hyper Eutectoid Plain Carbon Steel. International Advanced Research Journal in Science, Engineering and Technology, 4 (7), 257–262.
  19. Krauss, G. (1999). Martensite in steel: strength and structure. Materials Science and Engineering: A, 273-275, 40–57. doi: https://doi.org/10.1016/s0921-5093(99)00288-9
  20. Lee, K. O., Hong, S. K., Kang, Y. K., Yoon, H. J., Kang, S. S. (2009). Grain refinement in bearing steels using a double-quenching heat-treatment process. International Journal of Automotive Technology, 10 (6), 697–702. doi: https://doi.org/10.1007/s12239-009-0082-5
  21. Mishra, B., Jena, P. K., Ramakrishna, B., Madhu, V., Bhat, T. B., Gupta, N. K. (2012). Effect of tempering temperature, plate thickness and presence of holes on ballistic impact behavior and ASB formation of a high strength steel. International Journal of Impact Engineering, 44, 17–28. doi: https://doi.org/10.1016/j.ijimpeng.2011.12.004
  22. Etesami, S. A., Enayati, M. H., Kalashami, A. G. (2017). Austenite formation and mechanical properties of a cold rolled ferrite-martensite structure during intercritical annealing. Materials Science and Engineering: A, 682, 296–303. doi: https://doi.org/10.1016/j.msea.2016.09.112
  23. Saastamoinen, A., Kaijalainen, A., Heikkala, J., Porter, D., Suikkanen, P. (2018). The effect of tempering temperature on microstructure, mechanical properties and bendability of direct-quenched low-alloy strip steel. Materials Science and Engineering: A, 730, 284–294. doi: https://doi.org/10.1016/j.msea.2018.06.014
  24. Schumacher, J., Clausen, B., Zoch, H.-W. (2018). Influence of inclusion type and size on the fatigue strength of high strength steels. MATEC Web of Conferences, 165, 14003. doi: https://doi.org/10.1051/matecconf/201816514003
  25. Mani, E., Udhayakumar, T. (2018). Effect of prior austenitic grain size and tempering temperature on the energy absorption characteristics of low alloy quenched and tempered steels. Materials Science and Engineering: A, 716, 92–98. doi: https://doi.org/10.1016/j.msea.2018.01.020
  26. Qasim, B. M., Khidir, T. C., F. Hameed, A., Abduljabbar, A. A. (2018). Influence of heat treatment on the absorbed energy of carbon steel alloys using oil quenching and water quenching. Journal of Mechanical Engineering Research and Developments, 41 (3), 43–46. doi: https://doi.org/10.26480/jmerd.03.2018.43.46
  27. Long, S., Liang, Y., Jiang, Y., Liang, Y., Yang, M., Yi, Y. (2016). Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel. Materials Science and Engineering: A, 676, 38–47. doi: https://doi.org/10.1016/j.msea.2016.08.065
  28. González, G., Molina, R., Delavalle, M., Moro, L. (2015). Variation of Creep Resistance in Ferritic Steels by a Heat Treatment. Procedia Materials Science, 9, 412–418. doi: https://doi.org/10.1016/j.mspro.2015.05.011
  29. Laboratory team, 2019, Modul Praktikum Uji Aus (Indonesian). Mechanical Engineering Departement, Faculty of Engineering, Yogyakarta, Gadjah Mada University.
  30. Soejanto, Irwan (2009). Desain Eksperimen dengan Metode Taguchi. Yogyakarta, Graha Ilmu.
  31. Yurianto, Y., Pratikto, P., Soenoko, R., Suprapto, W. (2019). Effect of quench and temper on hardness and wear of HRP steel (armor steel candidate). Eastern-European Journal of Enterprise Technologies, 3 (12 (99)), 55–61. doi: https://doi.org/10.15587/1729-4061.2019.156799

Downloads

Published

2020-02-29

How to Cite

Yurianto, Y., Suprihanto, A., Suryo, S. H., Umardani, Y., & Yanuar, P. (2020). Effect of austenite temperature and holding time to impact energy and wear on HRP steel. Eastern-European Journal of Enterprise Technologies, 1(12 (103), 45–51. https://doi.org/10.15587/1729-4061.2020.156798

Issue

Section

Materials Science