Construction of a force method for estimating the longitudinal stability of the process of thin sheet rolling

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.160487

Keywords:

balance of forces, sheet rolling, deformation site, gripping capacity, stability criterion

Abstract

We have analyzed theoretical features of rolls gripping capacity at simple rolling process under a steady mode. It is shown that depending on the conditions for deformation the ratio of the maximum gripping angle to a friction coefficient can be equal to, be less or more than 2.

An experimental study has been performed involving the rolling of lead stepped samples measuring the forward creep at each step. Results of the experiment demonstrate that in the extreme case of deformation the forward creep is greater than zero, that is, there is a sufficient reserve of frictional forces so that reduction can be further increased, however, it is impossible.

We have analyzed the balance of all horizontal forces at deformation site. It is shown that at each cross section the stretching horizontal contact forces are used not only to overcome the ejecting ones, but also to compensate for the longitudinal internal forces that occur as a result of plastic deformation of a metal.

A force method for estimating the longitudinal stability of the sheet rolling process has been developed. An indicator of stability is a criterion that is determined from the diagrams of distribution of a normal contact stress and the stress of friction. It is shown that at a positive value of the criterion the rolling process proceeds under a steady mode; at a negative value, the stable process is impossible; and in the case it equals zero, the limit deformation occurs.

A theoretical study has been conducted into determining the maximum gripping angle under different conditions of sheet rolling. It is shown that the ratio of the maximum gripping angle to a friction coefficient almost does not depend on a strip thickness, the diameter of rolls, as well as friction coefficient, and equals 1.43‒1.44. A decrease in the gripping capacity of rolls is explained by the effect, at a deformation site, not only of contact forces, but the internal forces as well.

Author Biographies

Roman Romaniuk, Dniprovsk State Technical University Dniprobudivska str., 2, Kamenskoe, Ukraine, 51900

PhD, Associate Professor

Department of Labor Protection and Life Safety

Kateryna Levchuk, Dniprovsk State Technical University Dniprobudivska str., 2, Kamenskoe, Ukraine, 51900

PhD, Associate Professor

Department of Labor Protection and Life Safety

Yurii Hasylo, Dniprovsk State Technical University Dniprobudivska str., 2, Kamenskoe, Ukraine, 51900

PhD, Associate Professor

Department of Welding Technology and Equipment

Dmitry Chasov, Dniprovsk State Technical University Dniprobudivska str., 2, Kamenskoe, Ukraine, 51900

PhD, Associate Professor

Department of Mechanical Engineering

Olha Kriukovska, Dniprovsk State Technical University Dniprobudivska str., 2, Kamenskoe, Ukraine, 51900

PhD, Associate Professor

Department of Labor Protection and Life Safety

References

  1. Grudev, A. P. (1998). Zahvatyvayushchaya sposobnost' prokatnyh valkov. Moscow: “SP Intermet Inzhiniring”, 283.
  2. Maksimenko, O. P., Romanyuk, R. Ya. (2010). Estimation of Rolling Process Stability by Contact-Stress Diagrams. Metallurgical and Mining Industry, 2 (2), 122–129.
  3. Vasylev, Ya. D., Minaiev, O. A. (2009). Teoriya pozdovzhnoi prokatky. Donetsk: UNITEKh, 488.
  4. Romaniuk, R. Ya. (2014). Analiz metodiv otsinky pozdovzhnoi stiykosti protsesu tonkolystovoi prokatky. Obrabotka materyalov davlenyem, 1, 173–177.
  5. Mazur, V. L. et. al. (1997). Upravlenie kachestvom tonkolistovogo prokata. Kyiv: Tekhnika, 384.
  6. Garber, Е. А., Pavlov, S. I., Kozhevnikova, I. A., Timofeeva, M. A., Kuznetsov, V. V. (2010). Steel sheet surface quality improvement on the basis of new solutions in cold rolling theory. Vestnik Cherepoveckogo gosudarstvennogo universiteta, 2, 116–125.
  7. Garber, E. A. et. al. (2010). Issledovanie nestabil'nosti poperechnogo profilya polos na nepreryvnyh shirokopolosnyh stanah goryachey prokatki. Proizvodstvo prokata, 2, 2–7.
  8. Garber, E. A. et. al. (2010). Stabilizaciya tekhnologicheskih rezhimov shirokopolosnyh stanov dlya uluchsheniya kachestva poperechnogo profilya goryachekatanyh polos. Stal', 8, 56–61.
  9. Garber, E. A., Bolobanova, N. L. (2012). Modelirovanie uprugih deformaciy v valkah kletey i opredelenie ih konstruktivnyh parametrov, obespechivayushchih povyshenie tochnosti holodnokatanyh polos. Proizvodstvo prokata, 1, 17–18.
  10. Prihod'ko, I. Yu. et. al. (2009). Sistema avtomaticheskogo regulirovaniya ploskostnosti polos s ispol'zovaniem beskontaktnyh metodov izmereniya ploskostnosti i temperatury. Stal', 3, 41–45.
  11. Abdelkhalek, S., Montmitonnet, P., Legrand, N., Buessler, P. (2011). Coupled approach for flatness prediction in cold rolling of thin strip. International Journal of Mechanical Sciences, 53 (9), 661–675. doi: https://doi.org/10.1016/j.ijmecsci.2011.04.001
  12. Li, G.-H. (2018). EVC-Plus technique of transverse thickness deviation control of non-oriented silicon steel during cold rolling. IRON AND STEEL, 53 (8), 68–72. doi: https://doi.org/10.13228/j.boyuan.issn0449-749x.20180174
  13. Ji, J. (2015). Stability of the coupled vibrations of work roll and strip in cold rolling process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231 (7), 1169–1181. doi: https://doi.org/10.1177/0954405415585376
  14. Niroomand, M. R., Forouzan, M. R., Salimi, M., Shojaei, H. (2012). Experimental Investigations and ALE Finite Element Method Analysis of Chatter in Cold Strip Rolling. ISIJ International, 52 (12), 2245–2253. doi: https://doi.org/10.2355/isijinternational.52.2245
  15. Ren, Z., Xiao, H., Yu, C., Wang, J. (2017). Experimental study on transverse displacement of the metal during cold thin strip rolling. Procedia Engineering, 207, 1326–1331. doi: https://doi.org/10.1016/j.proeng.2017.10.891
  16. Kozhevnikov, A., Kozhevnikova, I., Bolobanova, N. (2018). Dynamic model of cold strip rolling. Metalurgija, 57 (1-2), 99–102.
  17. Romaniuk, R. Ya., Levchuk, K. O. (2017). Osoblyvosti sylovoi vzaiemodiyi shtaby z valkamy pry tonkolystoviy prokattsi. Zbirnyk naukovykh prats Dniprovskoho derzhavnoho tekhnichnoho universytetu (tekhnichni nauky), 2 (31), 51–55.
  18. Osakada, K. (2010). History of plasticity and metal forming analysis. Journal of Materials Processing Technology, 210 (11), 1436–1454. doi: https://doi.org/10.1016/j.jmatprotec.2010.04.001
  19. Vasilev, Ya. D. et. al. (2013). Opredelenie neytral'nogo ugla pri holodnoy prokatke s ispol'zovaniem utochnennoy modeli napryazheniy treniya. Obrabotka metallov davleniem, 3 (36), 81–85.
  20. Romaniuk, R. Ya. (2014). Stalist protsesu prokatky na osnovi doslidnykh epiur kontaktnykh napruzhen. Zbirnyk naukovykh prats Dniprodzerzhynskoho derzhavnoho tekhnichnoho universytetu. Tekhnichni nauky, 1 (24), 32–38.
  21. Romaniuk, R. Y., Levchuk, K. O., Hasylo, Y. A. (2017). Forecasting of theoretical orthographic epures of contact voltages at thin sheet rolling. Bulletin of National Technical University "KhPI": coll. sci. papers. Ser.: Innovative technologies and equipment handling materials in mechanical engineering and metallurgy, 37, 71–76.
  22. Maksimenko, O. P., Kachan, O. O. (2016). Vliyanie rezul'tiruyushchey prodol'nyh sil na ugol neytral'nogo secheniya. Zbirnyk naukovykh prats Dniprodzerzhynskoho derzhavnoho tekhnichnoho universytetu. Tekhnichni nauky, 2 (29), 38–42.
  23. Vasilyev, Y. D. (2012). Theoretical study of the infl uence of tension on the energy effi ciency of cold-rolled strip. Izvestiya Visshikh Uchebnykh Zavedenii. Chernaya Metallurgiya = Izvestiya. Ferrous Metallurgy, 55 (6), 3–5. doi: https://doi.org/10.17073/0368-0797-2012-6-3-5

Downloads

Published

2019-03-21

How to Cite

Romaniuk, R., Levchuk, K., Hasylo, Y., Chasov, D., & Kriukovska, O. (2019). Construction of a force method for estimating the longitudinal stability of the process of thin sheet rolling. Eastern-European Journal of Enterprise Technologies, 2(7 (98), 38–48. https://doi.org/10.15587/1729-4061.2019.160487

Issue

Section

Applied mechanics