Evolutionary optimization of electrotechnical equipment with loosely connected elements
DOI:
https://doi.org/10.15587/1729-4061.2013.16278Keywords:
electrical equipment, loosely connected systems, evolutionary optimization, symbolic models, fuzzy choiceAbstract
Despite the large number of types of electrical equipment, little attention has been paid to the fact that almost all of them can be divided into components (subsystems) with different levels of connectivity between the parameters of the latter.
It is shown that multiparameter, multiextreme and multicriteria properties of computer-aided design of loosely connected electrical structures leads to the fact that the best method for optimization is an evolutionary genetic algorithm, adjusted to working with complex connection systems, that ultimately defined the purpose and objectives of the study.
This paper first analyzed the features of such structures, based on computer-aided design requirements, based on which the presented CAD system «EVOSOFT» was created, allowing more profound optimization using advanced evolutionary genetic algorithms.
In the paper new operators of genetic algorithms for optimization of loosely connected systems were given and already known ones were modernized, fuzzy set theory for generation of symbolic models, that fully correspond to the components of real objects, was proposed.
The proposed methods for universal and evolutionary optimization and models for implementation of these methods were used to create a system of computer-aided design of electrical equipment with loosely connected elements «EVOSOFT». Practical testing of the CAD system confirmed its technical and economic efficiency compared with existing systems
References
- Бахрушин, В.Е. Слабосвязанные системы в природе и обществе [Текст] / В.Е. Бахрушин // Складні системи і процеси. – 2003. – № 1. – С. 21 – 25.
- Сотник, С.Л. Проектирование систем искусственного интеллекта. Конспект лекций [Электронный ресурс] / С.Л. Сотник. – Режим доступа: www/ URL: http://www.intuit.ru/department /expert/artintell/11/2.html. – 14.03.2012.
- Садовой, А.В. Алгоритмы обучения нейронных сетей будущего / А.В. Садовой, С.Л. Сотник [Электронный ресурс] / А.В. Садовой. – Режим доступа: www/ URL: http://alife-soft.narod.ru /note/algo/algo.html. – 22.11.2011.
- Эшби, У.Р. Конструкция мозга. Происхождение адаптивного поведения [Текст] / У.Р. Эшби. – М.: Издательство иностранной литературы – 1962. – 398 с.
- Дорошук, А.В. Применение современных методов для оптимизации электронных схем [Текст] / А.В. Дорошук // Труды Одесского политехнического университета. – 1999. – 2 (8). – С. 28 – 31.
- Ротштейн, А.П. Интеллектуальные технологии идентификации: нечеткие множества, генетические алгоритмы, нейронные сети [Текст] / А.П. Ротштейн. – Винница: Универсум-Винница, 1999. – 320 с.
- Монова, Д.А. Комплексный генетический алгоритм [Текст] / Д.А. Монова, А.А. Перпери, П.С. Швец // Праці Одеського політехнічного університету: Науковий та науково-виробничий збірник. – 2011. – Вип. 1 (35). – С. 176 – 180.
- Перпері, А.О. Модернізація математичного методу генетичного алгоритму для оптимізації взаємозалежних технологічних процесів [Текст] / А.О. Перпері, Л.А. Одукалець, Д.А. Монова, П.С. Швець // Збірник наукових праць Інституту проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України. Моделювання та інформаційні технології. – 2011. – Вип. 60. – С. 90 – 94.
- Перпері, А.О. Модернізація математичного методу генетичного алгоритму для оптимізації геометрії шліфувальних кіл [Текст] / А.О. Перпері, П.С. Швець, Д.А. Монова // Вісник Одеської державної академії будівництва та архітектури. – 2011. – № 41. – С. 217 – 221.
- Силовые трансформаторы. Справочная книга [Текст] / Под ред. С.Д. Лизунова, А.К. Лоханина // М.: Энергоиздат, 2004. – 616 с.
- Раскин, Л.Г. Нечеткая математика. Основы теории. Приложения [Текст] / Л.Г. Раскин, О.В. Серая. – Х.: Парус, 2008. – 352 с.
- Bahrushyn, V.E. (2003). Slabosviazannye sistemy v prirode i obshchestve. Skladni systemy i protsesy, 1, 21 – 25.
- Sotnik, S.L. (2012) Proektirovanie sistem iskusstvennogo intellekta. Konspekt lektsiy. Available: http://www.intuit.ru/department /expert/artintell/11/2.html.
- Sadovoy, A.V., Sotnik, S. (2011). Algoritmy obucheniia neyronnyh setei budushchego. Available:: http://alife-soft.narod.ru /note/algo/algo.html.
- Eshbi, U.R. (1962). Konstruktsiia mozga. Proishozhdenie adaptivnogo povedeniia. M.: Izdatelstvo inostrannoi literatury, 398 p.
- Doroshuk, A.V. (1999). Primenenie sovremennyh metodov dlia optimizatsii elektronnyh shem. Trudy Odesskogo politehnicheskogo universiteta, 2 (8), 28 – 31.
- Rotshteyn, A.P. (1999). Intellektualnye tehnologii identifikatsii: nechetkie mnozhestva, geneticheskie algoritmy, neyronnye seti. Vinnitsa: Universum-Vinnitsa, 320 p.
- Monova, D.A., Perperi, A.A., Shvets, P.S. (2011). Kompleksnyi
- geneticheskii algoritm. Pratsi Odeskogo politehnichnogo universytetu: Naukovyi ta naukovo-vyrobnychyi zbirnyk, 1 (35), 176 – 180.
- Perperi, A.O., Odukalets, L.A., Monova, D.A., Shvets, P.S. (2011). Modernizatsiia matematychnogo metodu genetychnogo algorytmu dlia optimizatsii vzaiemozalezhnyh tehnologichnih protsesiv. Zbirnyk naukovyh prats Instytutu problem modeliuvannia v energetytsi Im. G.E. Puhova NAN Ukrainy. Modeliuvannia ta informatsiyni tehnologii, 60, 90 – 94.
- Perperi, A.O., Monova, D.V., Shvets, P.S. (2011). Modernizatsiia matematichnogo metodu genetychnogo algorytmu dlia optymizatsii geometrii shlifuvalnyh kil. Visnyk Odeskoi derzhavnoi akademii budivnytstva ta arhitektury, 41, 217 – 221.
- In: Lizunova, S.D., Lohanina, А.K. (2004). Silovye transformatory. Spravochnaja kniga. 616 p.
- Raskin, L.G., Seraya, O.V. (2008). Nechetkaia matematika. Osnovy teorii. Prilozheniia. 352 p.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Александр Леонидович Становский, Павло Степанович Швець, Алла Владимировна Торопенко
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.