Determining the motion character of loose materials in the system of continuous action «hopper – reciprocating plate feeder»

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.163545

Keywords:

cylindrical-conical hopper, reciprocating plate feeder, bulk material, discrete element method, particles interaction

Abstract

This paper reports methods for modeling the movement of bulk material in dispensing equipment of continuous action. It was established that modeling the pulsations and fractures in the flow of bulk material can be performed using the  discrete element method. On its basis, a model has been constructed of the system consisting of a cylindrically-conically-shaped hopper and a reciprocating plate feeder of continuous action. Particles of bulk material are represented in the form of spheres with a constant radius between which the forces of friction and elasticity act.

The result of modeling is the determined movement speed and position of each particle in the transverse section of the system «hopper‒ reciprocating plate feeder» and at the surface of a feeder’s plate. The regions have been defined with typical movement speeds of bulk material, as well as the system’s performance. The maximum speed of the particles is observed in the region of the outlet branch pipe of the hopper, along its central axis, and in the outer layer of the material that is found at the surface of a plate. Minimum speeds are observed near the walls of the hopper and at the center of a plate. It was established that in the course of a feeder’s operation there is an increase in the radius of the cone of bulk material that resides at the surface of a plate, by 15.2 %.

The system was experimentally studied using a testing bench, consisting of a conical-cylindrical hopper, a reciprocating plate feeder of continuous operation, and a data acquisition system. The feeder’s performance under a steady operation mode has been determined. It was established that it is pulsating in character that matches the results from analytical calculations based on the constructed model. The conclusion about correspondence of the obtained results has been drawn based on the equality of variances in performance, which was checked using a Fisher criterion.

The resulting model could be applied in order to analyze steady operational modes of reciprocating plate feeders of continuous action for the case when bulk material arrives to the center of a plate

Author Biographies

Volodymyr Statsenko, Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011

PhD, Associate Professor

Department of Computer Engineering and Electromechanical Systems

Oleksandr Burmistenkov, Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011

Doctor of Technical Sciences, Professor

Department of Computer Engineering and Electromechanical Systems

Tetyana Bila, Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011

PhD, Associate Professor

Department of Computer Engineering and Electromechanical Systems

Dmytro Statsenko, Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011

PhD

Department of Computer Engineering and Electromechanical Systems

References

  1. Burmistenkov, O. P. et. al.; Konoval, V. P. (Ed.) (2007). Vyrobnytstvo lytykh detalei ta vyrobiv z polimernykh materialiv u vzuttieviy ta shkirhalantereiniy promyslovosti. Khmelnytskyi, 255.
  2. Burmistenkov, O. P., Starodub, O. A., Misiats, V. P., Bila, T. Ya., Statsenko, V. V. (2011). Protsesy ta obladnannia pidhotovchykh vyrobnytstv lehkoi promyslovosti. Kyiv: KNUTD, 138.
  3. Ahmadiev, F. G., Aleksandrovskiy, A. A. (1988). Modelirovanie i realizaciya sposobov prigotovleniya smesey. Zhurn. Vsesoyuz. him. obshch-va im. D. I. Mendeleeva, 33 (4), 448.
  4. Kulik, T., Synyuk, O., Zlotenko, B. (2017). Modeling a process of filling the mold during injection molding of polymeric parts. Eastern-European Journal of Enterprise Technologies, 5 (1 (89)), 70–77. doi: https://doi.org/10.15587/1729-4061.2017.110820
  5. Burmistenkov, A. P., Belaya, T. Ya. (1982). Issledovanie processa prigotovleniya polimernih kompoziciy dlya proizvodstva plenochnyh polimernyh materialov. Izv. vuzov. Tekhnologiya legkoy promyshlennosti, 6.
  6. Statsenko, V. V., Burmistenkov, O. P., Bila, T. Ya. (2017). Avtomatyzovani kompleksy bezperervnoho pryhotuvannia kompozytsiy sypkykh materialiv. Kyiv: KNUTD, 219.
  7. Bakin, I. A., Sablinskiy, A. I., Belousov, G. N. (2003). Kompleksnoe modelirovanie processov nepreryvnogo smeseprigotovleniya. Tekhnologiya i tekhnika pishchevyh proizvodstv, 137–141.
  8. Katalymov, A. V., Lyubartovich, V. A. (1990). Dozirovanie sypuchih i vyazkih materialov. Leningrad: Himiya, 232.
  9. Alferov, K. V., Zenkov, R. L. (1955). Bunkernye ustanovki. Proektirovanie, raschet i ekspluataciya. Moscow, 308.
  10. Globin, A. N. (2009). Puti sovershenstvovaniya doziruyushchih ustroystv. Sovershenstvovanie tekhnologicheskih processov i tekhnicheskih sredstv v APK. 5–6.
  11. Generalov, M. B. (2002). Mekhanika tverdyh dispersnyh sred v processah himicheskoy tekhnologii. Kaluga: N. Bochkarevoy, 592.
  12. Bila, T. Ya., Statsenko, V. V. (2006). Analitychne doslidzhennia rukhu chastok sumishi u dvorotornomu zmishuvachi bezperervnoi diyi. Visnyk Kyivskoho natsionalnoho universytetu tekhnolohiy ta dyzainu, 5, 30–34.
  13. Panasyuk, I., Zalyubovskiy, M. (2015). Driving machine shaft angular velocity impact on motion conditional change of granular medium in working reservoir for components compounding and process. Metallurgical and Mining Industry, 3, 260–264.
  14. Burmistenkov, A. P., Belaya, T. Ya. (1987). Odnoparametricheskaya diffuzionnaya model' centrobezhnogo smesitelya nepreryvnogo deystviya dlya sypuchih materialov. Izv. vuzov. Tekhnologiya legkoy promyshlennosti, 5, 137–139.
  15. Munjiza, A. (2004). The Combined Finite-Discrete Element Method. Wiley, 333. doi: https://doi.org/10.1002/0470020180
  16. Magalhães, F. G. R., Atman, A. P. F., Moreira, J. G., Herrmann, H. J. (2016). Analysis of the velocity field of granular hopper flow. Granular Matter, 18 (2). doi: https://doi.org/10.1007/s10035-016-0636-y
  17. Potapov, A. V., Campbell, C. S. (1996). Computer simulation of hopper flow. Physics of Fluids, 8 (11), 2884–2894. doi: https://doi.org/10.1063/1.869069
  18. Yan, Z., Wilkinson, S. K., Stitt, E. H., Marigo, M. (2015). Discrete element modelling (DEM) input parameters: understanding their impact on model predictions using statistical analysis. Computational Particle Mechanics, 2 (3), 283–299. doi: https://doi.org/10.1007/s40571-015-0056-5
  19. Nakano, M., Abe, T., Kano, J., Kunitomo, K. (2012). DEM Analysis on Size Segregation in Feed Bed of Sintering Machine. ISIJ International, 52 (9), 1559–1564. doi: https://doi.org/10.2355/isijinternational.52.1559
  20. Kessler, F., Prenner, M. (2009). DEM – Simulation of Conveyor Transfer Chutes. FME Transactions, 37 (4), 185–192.
  21. Third, J. R., Scott, D. M., Lu, G., Müller, C. R. (2015). Modelling axial dispersion of granular material in inclined rotating cylinders with bulk flow. Granular Matter, 17 (1), 33–41. doi: https://doi.org/10.1007/s10035-014-0542-0
  22. Shuhin, V. V., Marsov, V. I., Suetina, T. A., Kolbasin, A. M. (2013). Dozatory nepreryvnogo deystviya s kompensaciey vozmushcheniya vhodnogo potoka materiala. Mekhanizaciya stroitel'stva, 2, 32–34.
  23. Popov, V. L. (2012). Mekhanika kontaktnogo vzaimodeystviya i fizika treniya. Moscow: Fizmatlit, 348.
  24. Mindlin, R. D., Deresiewicz, H. (1953). Elastic Spheres in Contact under Varying Oblique Force. Trans. ASME J. Appl. Mech., 20, 327–344.
  25. Tsuji, Y., Tanaka, T., Ishida, T. (1992). Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technology, 71 (3), 239–250. doi: https://doi.org/10.1016/0032-5910(92)88030-l
  26. Shpak, Yu. A. (2006). Programmirovanie na yazyke C dlya AVR i PIC mikrokontrollerov. MK-Press, 400.

Downloads

Published

2019-04-12

How to Cite

Statsenko, V., Burmistenkov, O., Bila, T., & Statsenko, D. (2019). Determining the motion character of loose materials in the system of continuous action «hopper – reciprocating plate feeder». Eastern-European Journal of Enterprise Technologies, 2(1 (98), 21–28. https://doi.org/10.15587/1729-4061.2019.163545

Issue

Section

Engineering technological systems