Investigation of the influence of hardness characteristics of the collet-part lathe system
DOI:
https://doi.org/10.15587/1729-4061.2019.164091Keywords:
metal cutting machine, collet, part, clamping hardness, elastic system, equipment designAbstract
The results of the study of the hardness characteristics of the collet-part lathe system, which are essentially nonlinear and influence the damping parameters of the spindle assembly unit, are presented. The aim of the work is to study the characteristics of the nonlinear hardness of the elements of the collet-part technological system. In order to realize this aim, in the course of experimental research, static and dynamic characteristics of the spindle core hardness are defined, which are looped hysteresis curves that are characteristic of mechanical systems with a large number of bonds. Measurements of nonlinear parameters of the hardness of the collet-part system are carried out. Measurements are made according to the original method. The basis of the technique is the multi-cycle static load of the spindle in the processing zone in the direction of the vector of the dynamic component of the cutting force by the developed equipment. The equipment includes a screw loader, a two-way ring dynamometer and a mandrel fitted in the spindle of the machine. As a result of the research, the features of the nonlinear characteristics of the hardness of the collet-part lathe system are determined. For the collet-part system, the width of the hysteresis loop in the cold state can reach 20...70 microns. The hysteresis characteristics of the collet-part system in the heated state have the width of the hysteresis loop of 50...200 microns with clamping the part with a diameter of 80...115 mm and a radius of 100...120 mm. Recommendations on the assessment of the hardness change limit depending on the design of the collet are developed. The proposed technique allows one cartridge position to be measured by pressing according to the scheme of loading «on a cam» and «between cams», which reduces twofold the amount of experimental research.
References
- Orlikov, M. L. (1989). Dinamika stankov. Kyiv: Vysshaya shkola, 272.
- Litvin, A. V. (2014). Technological systems lathe and its effects on processing nonrigid parts. Visnyk SevNTU. Seriya: Mashynopryladobuduvannia ta transport, 151, 81–86.
- Advancement of Intelligent Production (1994). Chiba. doi: https://doi.org/10.1016/c2009-0-10316-1
- Feng, P. (2003). Berechnungsmodell zur Ermittlung von Spannkraeften bei Backenfuttern. Technische Universität Berlin.
- Doi, M., Masuko, M., Ito, Y., Tezuka, A. (1985). A Study on Parametric Vibration in Chuck Work. Bulletin of JSME, 28 (245), 2774–2780. doi: https://doi.org/10.1299/jsme1958.28.2774
- Lee, J.-H., Lee, S.-K. (2004). Chucking compliance compensation with a linear motor-driven tool system. The International Journal of Advanced Manufacturing Technology, 23 (1-2), 102–109. doi: https://doi.org/10.1007/s00170-003-1696-9
- Rahman, M. (1989). A Study on the Deviation of Shape of a Turned Workpiece Clamped by Multiple Jaws. CIRP Annals, 38 (1), 385–388. doi: https://doi.org/10.1016/s0007-8506(07)62729-2
- Ema, S., Marui, E. (1994). Chucking Performance of a Wedge-Type Power Chuck. Journal of Engineering for Industry, 116 (1), 70. doi: https://doi.org/10.1115/1.2901811
- Byun, J., Liu, C. R. (2012). Methods for Improving Chucking Accuracy. Journal of Manufacturing Science and Engineering, 134 (5), 051004. doi: https://doi.org/10.1115/1.4005947
- Eggebrecht, M., Georgiadis, A., Wagner, T. (2013). Strategies for correcting the workpiece deformation during the manufacturing at the milling process. Conferences 2013 – SENSOR 2013, 324–327. doi: http://doi.org/10.5162/sensor2013/B8.2
- Wang, J., Zhang, J., Feng, P., Wu, Z., Zhang, G. (2015). Modeling and simulation for the critical bending force of power chucks to guarantee high machining precision. The International Journal of Advanced Manufacturing Technology, 79 (5-8), 1081–1094. doi: https://doi.org/10.1007/s00170-015-6887-7
- Estrems, M., Carrero-Blanco, J., Cumbicus, W. E., de Francisco, O., Sánchez, H. T. (2017). Contact mechanics applied to the machining of thin rings. Procedia Manufacturing, 13, 655–662. doi: https://doi.org/10.1016/j.promfg.2017.09.138
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Ibrahim Farhan Salman Alrefo, Walid Ibrahim Alnusirat, Оleksandr Litvin
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.