Application of index estimates for improving accuracy during selection of machine operators

Authors

  • Alexander Laktionov Poltava Polytechnic College of the National Technical University "Kharkiv Polytechnic Institute" Pushkina str., 83a, Poltava, Ukraine, 36000, Ukraine https://orcid.org/0000-0002-5230-524X

DOI:

https://doi.org/10.15587/1729-4061.2019.165884

Keywords:

self-assessments, expert estimates, standardized estimates, objective assessments, index estimates.

Abstract

The methods proposed in this paper for calculating index ratings when selecting machine operators provide greater accuracy than the selection based on expert estimates and integrated indicators for groups of expert estimates.

Index estimates are calculated based on the algorithm that combines self-assessments and expert estimates into the Quality index of professional competence of a machine operator (ІРС) while expert estimates and standardized assessments are combined into the Quality index of a machine operator training (IQT). The proposed methods for computing the index estimates comprehensively characterize an element in the functioning of the social subsystem in the system «Machine operator ‒ Machine with numerical control ‒ Part manufacturing program», OMMP.

Index estimates characterize the degree of coherence/imbalance among self-assessments and expert estimates, as well as expert estimates and standardized assessments, as well as systemic interrelations between a machine operator and elements of the social, technical, and information subsystems within an open system.

Advantages of index-based selection of machine operators over that based on expert estimates were assessed by comparing the two series of rankings in a list of names. The series of rankings were obtained using such methods as linear convolution and multiplicative convolution. It has been proven that the selection of machine operators using linear convolution is considerably more accurate if carried out based on the index estimates, when compared with expert estimates. It is appropriate to use a binary search method to select machine operators in accordance with a customer’s requirements.

Author Biography

Alexander Laktionov, Poltava Polytechnic College of the National Technical University "Kharkiv Polytechnic Institute" Pushkina str., 83a, Poltava, Ukraine, 36000

Lecturer

References

  1. Zhou, F., Lin, Y., Wang, X., Zhou, L., He, Y. (2016). ELV Recycling Service Provider Selection Using the Hybrid MCDM Method: A Case Application in China. Sustainability, 8 (5), 482. doi: https://doi.org/10.3390/su8050482
  2. Rostami, P., Neshati, M. (2019). T-shaped grouping: Expert finding models to agile software teams retrieval. Expert Systems with Applications, 118, 231–245. doi: https://doi.org/10.1016/j.eswa.2018.10.015
  3. Montazer, G. A., Saremi, H. Q., Ramezani, M. (2009). Design a new mixed expert decision aiding system using fuzzy ELECTRE III method for vendor selection. Expert Systems with Applications, 36 (8), 10837–10847. doi: https://doi.org/10.1016/j.eswa.2009.01.019
  4. Alonso, F., Martínez, L., Pérez, A., Valente, J. P. (2012). Cooperation between expert knowledge and data mining discovered knowledge: Lessons learned. Expert Systems with Applications, 39 (8), 7524–7535. doi: https://doi.org/10.1016/j.eswa.2012.01.133
  5. Parmezan, A. R. S., Lee, H. D., Wu, F. C. (2017). Metalearning for choosing feature selection algorithms in data mining: Proposal of a new framework. Expert Systems with Applications, 75, 1–24. doi: https://doi.org/10.1016/j.eswa.2017.01.013
  6. Shkola, I. M., Dron, Ye. V. (2009). Vidbir personalu yak mekhanizm formuvannia trudovoho potentsialu pidpryiemstva. Zb. nauk. prats. Bukovynskoho un-tu. Seriya: Ekonomichni nauky, 5, 41–49.
  7. Naseykina, L. F. (2014). Automation of IT-department staff recruitment. Vestnik Orenburgskogo gosudarstvennogo universiteta, 9, 190–196.
  8. Al-Kasasbeh, R. T. (2012). Biotechnical measurement and software system controlled features for determining the level of psycho-emotional tension on man–machine systems by fuzzy measures. Advances in Engineering Software, 45 (1), 137–143. doi: https://doi.org/10.1016/j.advengsoft.2011.09.004
  9. Chernyshov, K. R. (2016). Application of System Identification Techniques to Revealing Professional Skills of Teams of Human-Operators. IFAC-PapersOnLine, 49 (32), 107–112. doi: https://doi.org/10.1016/j.ifacol.2016.12.198
  10. Lee, S., Kim, W., Kim, Y. M., Lee, H. Y., Oh, K. J. (2014). The prioritization and verification of IT emerging technologies using an analytic hierarchy process and cluster analysis. Technological Forecasting and Social Change, 87, 292–304. doi: https://doi.org/10.1016/j.techfore.2013.12.029
  11. Lebedyk, M. P. (2003). Tekhnolohiya atestatsiyi tsilisnoho rozvytku osobystosti na osnovi otsinok sotsialnoi zrilosti uchasnykiv pedahohichnoho protsesu. Poltava: RVV PUSKU, 305.
  12. Laktionov, A. (2018). Research of information maintenance technology of machine operator training quality assessment as the element of the system. EUREKA: Physics and Engineering, 6, 12–21. doi: https://doi.org/10.21303/2461-4262.2018.00790
  13. Radkevich, Ya. M., Belyankina, O. V., Sizova, E. I., Kuz'mina, R. S. Estimation of Quality of Manufacture of Parts and Assemblies. Available at: http://rosgorprom.com/images/_sb2013_pdf/Sb2013ed_7.pdf
  14. Dovidnyk kvalifikatsiynykh kharakterystyk profesiy pratsivnykiv Vypusk 42 Obroblennia metalu: Nakaz Ministerstva promyslovoi polityky Ukrainy 22.03.2007 No. 120. Available at: http://parusconsultant.com/?doc=05Z5408502&abz=9CHKY
  15. Pro zakhyst personalnykh danykh: Zakon Ukrainy vid 01.06.2010 No. 2297-VI (zi zminamy i dopovnenniamy). Data onovlennia: 09.04.2018. Available at: http://search.ligazakon.ua/l_doc2.nsf/link1/ed_2010_06_01/T102297.html
  16. Akulenko, K. Yu. (2017). Konspekt lektsiy z navchalnoi dystsypliny «Teoriya pryiniattia rishen» dlia studentiv spetsialnosti 122 «Kompiuterni nauky» dennoi formy navchannia. Rivne: NUVHP, 51.
  17. Smorodinskiy, S. S., Btin, N. V. (2009). Sistemniy analiz i issledovanie operaciy: laborator. praktikum dlya studentov special'nosti “Avtomatizir. sistemy obrab. inform.” dnevn. i distanc. form obucheniya. Minsk: BGUIR, 64.
  18. Kolev, Zh. M., Mamchistova, A. I., Mamchistova, Е. I., Revnivyh, A. V., Nazarova, N. V., Krasovskiy, A. V. (2015). Prinyatie resheniy v usloviyah neopredelennosti i riska primenitel'no k zadacham neftegazovoy otrasli. Tyumen': TyumGNGU, 94.
  19. Olekh, T. M., Oborskaya, A. G., Kolesnikova, E. V. (2012). Methods for evaluation of projects and programs. Pratsi Odeskoho politekhnichnoho universytetu, 2, 213–217.
  20. Dmytrienko, V. D., Zakovorotnyi, O. Yu. (2012). Zasoby ta alhorytmy pryiniattia rishen: laboratornyi praktykum. Kharkiv: HTMT, 76.
  21. Korotieieva, T. O. (2014). Alhorytmy ta struktury danykh. Lviv: Vydavnytstvo Lvivskoi politekhniky, 280.
  22. Virt, N. (1989). Algoritmy i struktury dannyh. Moscow: Mir, 360.

Downloads

Published

2019-05-02

How to Cite

Laktionov, A. (2019). Application of index estimates for improving accuracy during selection of machine operators. Eastern-European Journal of Enterprise Technologies, 3(1 (99), 18–26. https://doi.org/10.15587/1729-4061.2019.165884

Issue

Section

Engineering technological systems