Decomposition of color images into singular components

Authors

  • Виктор Иванович Загребнюк Odessa national academy of telecommunication n.a. A.S. Popov, str. Kuznechnaya 1, Odessa, Ukraine, 65029, Ukraine
  • Фуад Вагиф оглы Насиров Odessa national academy of telecommunication n.a. A.S. Popov, str. Kuznechnaya 1, Odessa, Ukraine, 65029, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.16652

Keywords:

image segmentation, context image retrieval, singular image decomposition, context region-based retrieval

Abstract

Image segmentation is widely used in the systems of context region-based image retrieval (RBIR). For the RBIR system implementation first of all it is necessary to develop an image automatic annotation subsystem, namely to represent an image as a set of semantically separate regions. For solving this problem the method of image decomposition into singular components corresponding to three largest eigenvalues, which contain information about largescale regions, is proposed. The method, based on the analysis of eigenvectors, was proposed for automatic determining the number of regions or large-scale color clusters. It is shown, that the number of clusters is equal to the number of sign inversions of the component of eigenvector, corresponding to the third eigenvalue, in the order of descending sequence of singular values

Author Biographies

Виктор Иванович Загребнюк, Odessa national academy of telecommunication n.a. A.S. Popov, str. Kuznechnaya 1, Odessa, Ukraine, 65029

Candidate of technical sciences, associate professor

Department of postal networks and systems

Фуад Вагиф оглы Насиров, Odessa national academy of telecommunication n.a. A.S. Popov, str. Kuznechnaya 1, Odessa, Ukraine, 65029

Postgraduate

Department of postal networks and systems

References

  1. Mancas-Thilou, C. Spatial and Color Spaces Combination for Natural Scene Text Extraction [Text] / C. Mancas-Thilou, B. Gosselin // Proceedings of IEEE International Conference on Image Processing. - 2006. - №2. - pp. 985-988.
  2. Deb, K. Statistical Characteristics in HSI Color Model and Position Histogram based Vehicle License Plate Detection [Text] / K. Deb, K.-H. Jo // Intelligent Service Robots. - 2009. - т. 2. - №3. - pp. 173-186.
  3. Cheng, L. An Efficient Approach for Tree Digital Image Segmentation [Text] / L. Cheng, T. Y. Song // Forestry Studies in China, 2004. - №6. - pp. 43-49.
  4. Morales, R. Blood vessel segmentation via neural network in histological images [Text] / R. Morales, T. E Alarcón Martínez, J. José // Journal Intelligent & Robotic System. - 2003. - т. 36. - № 4. - pp. 451 – 465.
  5. Mozina, M. Real-time image segmentation for visual inspection of pharmaceutical tablets [Text] / M. Mozina, D. Tomazevic, F. Pernus, B. Likar // In Proceedings of Machine Vision Applications. - 2011. - pp. 145-156.
  6. Mezaris, V. A test-bed for region-based image retrieval using multiple segmentation algorithms and the MPEG-7 eXperimentation Model: The Schema Reference System [Text] / V. Mezaris, H. Doulaverakis, R. Medina Beltran de Otalora, S. Herrmann, I. Kompatsiaris, M. G. Strintzis // Proc. 3rd International Conference on Image and Video Retrieval.- 2004. - т. 3115. - pp. 592-600.
  7. Sridhar, V. Region-based Image Retrieval using Multiple Features [Text] / V. Sridhar, M. A. Nascimen, X. Li // Proceedings of the Visual Information Systems Conference. - 2002. - pp. 61-75.
  8. Sural, S. Segmentation and histogram generation using the HSV color space for image retrieval [Text] / S. Sural, G. Qian, S. Pramanik // Proceedings of IEEE International Conference on Image Processing. - 2002. - pp. 589–592.
  9. Shin, M. C. Does colorspace transformation make any difference on skin detection? [Text] / M. C. Shin, K. I. Chang, L. V. Tsap // Proceedings of the Sixth IEEE Workshop on Applications of Computer Vision.- 2002. - pp. 275-284
  10. Martin, D. A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics [Text] / D. Martin, C. Fowlkes, D. Tal, J. Malik. - Proceedings 8th Intel Conference Computer Vision. - 2001. - т.2. - pp. 416−423
  11. Mancas-Thilou, C., Gosselin, B. (2006). Spatial and Color Spaces Combination for Natural Scene Text Extraction. Proceedings of IEEE International Conference on Iimage Processing, 985-988.
  12. Deb, K., Jo, K.-H. (2009). Statistical Characteristics in HSI Color Model and Position Histogram based Vehicle License Plate Detection. Intelligent Service Robots, 2, 3, 173-186.
  13. Cheng, L., Song, T. Y. (2003). An Efficient Approach for Tree Digital Image Segmentation. Forestry Studies in China, 6, 43-49.
  14. Morales, R., Alarcón Martínez, T. E., & José, J. (2004). Blood vessel segmentation via neural network in histological images. Journal Intelligent & Robotic System, 36, 4, 451 – 465.
  15. Mozina, M., Tomazevic, D., Pernus, F., & Likar, B. (2011). Real-time image segmentation for visual inspection of pharmaceutical tablets. Proceedings of Machine Vision Application, 145-156.
  16. Mezaris, V., Doulaverakis, H., Medina Beltran de Otalora, R., Herrmann, V., Kompatsiaris, I., & Strintzis, M. G. (2004). A test-bed for region-based image retrieval using multiple segmentation algorithms and the MPEG-7 eXperimentation Model: The Schema Reference System. Proceedings. 3rd International Conference on Image and Video Retrieval, Dublin, Ireland, Springer LNCS, 3115, 592-600.
  17. Sridhar, V., Nascimen, M. A., & Li, X. (2002). Region-based Image Retrieval using Multiple Features. Proceedings of the Visual Information Systems Conference, 61-75.
  18. Sural, S., Qian, G., & Pramanik, S. (2002). Segmentation and histogram generation using the HSV color space for image retrieval. Proceedings of IEEE International Conference on Image Processing, 589–592.
  19. Shin, M. C., Chang, K. I., & Tsap, L. V. (2002). Does colorspace transformation make any difference on skin detection, Proceedings of the Sixth IEEE Workshop on Applications of Computer Vision, Washington, DC, USA, IEEE Computer Society, 275
  20. Martin, D., Fowlkes, C., & Tal, D., & Malik, J. (2001). A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. Proceedings 8th Intel Conference Computer Vision, 2, 416−423

Published

2013-07-30

How to Cite

Загребнюк, В. И., & Насиров, Ф. В. о. (2013). Decomposition of color images into singular components. Eastern-European Journal of Enterprise Technologies, 4(2(64), 15–19. https://doi.org/10.15587/1729-4061.2013.16652

Issue

Section

Information technology