Estimation of magnetic field generated by two concentric circular currents
DOI:
https://doi.org/10.15587/1729-4061.2013.16673Keywords:
circular current, magnetic induction, field of a circular current, vector line integralAbstract
The work considers two circular loops of different radii with a common center and plane. The magnetic field has been determined in a plane parallel to the loops plane and passing through the axis of the system symmetry. It is assumed that the field in the loops center reaches zero, and the distance to the observance plane is equal to the size of loops, it means that the field is estimated in the proximal area.
The method for estimating magnetic fields produced by two circular currents in their opposite directions has been presented. For determining the magnetic field induction produced by a flat closed loop at the random point the classical formula of the Biot-Savart-Laplace law is used. The basic formulae and results of numerical calculation of distribution of magnetic fields generated by such system are given. It is shown that the local maximum of magnetic induction vector arises along the axis of symmetry. These results can be used for magnetic carriers confinement during magnetic therapy
References
- Ландау, Л. Д. Электродинамика сплошных сред: Теоретическая физика, т.8. [Текст] / Л.Д. Ландау, Е.М. Лифшиц. – М.: Наука, 1982. – 624с.
- Ахиезер, А. И. Общая физика. Электрические и магнитные явления [Текст] / А.И. Ахиезер. – Киев: Наук. Думка, 1981. – 468 с.
- Гетьман, А. В. Аналитическое представление магнитного поля соленоида с помощью цилиндрических гармоник [Текст] / А. В. Гетьман, А. В. Константинов // Электротехника и Электромеханика. – 2010. – №5. – С. 43–45.
- Гетьман, А. В. Цилиндрические гармоники скалярного потенциала магнитного поля токовой обмотки электромагнита [Текст] / А. В. Гетьман, А. В. Константинов // Вісник Національного технічного університету. – 2012. – XIII, №49. – С. 66–72.
- Калантаров, П. Л., Цейтлин Л.А. Расчёт индуктивностей. [Текст] / П.Л. Калантаров, Л.А. Цейтлин. – М.: Энергия, 1970. – 180с.
- Черкашин, Ю. С. Влияние паразитных параметров линий связи на выбор режимов электрической цепи. [Текст] / Ю.С. Черкашин. – М.: Электричество, 2005. – №5.
- Электротехнический справочник [Текст] / Под ред. М.Г. Чиликина. - М.: Госэнергиздат, 1952, стр.: 143, 599, 609.
- Основы электротехники. Под ред. К.А. Круга и др. [Текст] / М.: Госэнергиздат, 1952, стр. 258.
- Вергун, Л. Ю. Нанокомпозиты медико-биологического назначения на основе ультрадисперсного магнетита вычислений [Текст] / Л.Ю. Вергун, П.П. Горбик, Л. Г. Гречко и др. / В кн.: Физикохимия наноматериалов и субмолекулярных структур, 2007. – T. 1. – С. 45–89.
- Форсайт, Дж. Машинные методы математических вычислений [Текст] / Дж. Форсайт, М. Малькольм, К. Моулер. – М.: Мир, 1980. – 280 с
- Landau, L. D., Lifshitz E. M. (1982). Elektrodinamika sploshnyh sred: Teoreticheskaya fizika. V.8. Мoskwa: Nauka, 624.
- Ahiezer, А.I. (1981). Obschaya fizika. Elektricheskie I magnitnye yavleniya. Kiev: Naukova Dumka, 468.
- Getman, А.V., Konstantinov, A.V. (2010). Analiticheskoo predstavlenie magnitnogo polya solenoid s pomoschu tsilindricheskih garmonik. Elektrotehnika I Elektromehanika, 5, 43–45.
- Getman, А.V., Konstantinov, A.V. (2012). Cilindricheskie garmoniki skalyarnogo potenciala magnitnogo polya tokovoi obmotki elektromagnita. Visnyk Natzionalnogo tehnichnogo universytetu, XIII, (49), 66–72.
- Kalantarov P. L., Ceitlin L. A. (1970). Raschet induktivnostei. Мoskwa: Energiya, 180.
- Cherkashin U. S. (2005). Vliyanie parazitnyh parametrov linii svyazi na vybor rejimov elektricheskoi tzepi. Мoskva: Elektrichestvo, №5.
- Elektrotehnicheskii spravochnik. Pod redakciei M.G. Chilikina. (1952). Мoskwa: Gosenergoizdat, 143, 599, 609.
- Osnovy electrotehniki. Pod redakciei K.A. Kruga I drudih. (1952). Мoskva: Gosenergoizdat, 258.
- Vergun, L.U., Gorbyk, P.P., Grechko, L.G., Dubrovin, I.V., Korduban, О.М., Lerman, L.B., Chekhun, V.F., Shpak, A.P. (2007). Nanokompozity medico–biologicheskogo naznacheniya na osnove ultradispersnogo magnetite. In book: Fiziko–himiya nanomaterialov I submolekulyarnyh struktur. V.1, P. 45–89.
- Forsait Dj., Malkolm М., Mouler К. (1980). Mashinnye metody matematicheskih vychislenii. Moscow, USSR: Mir, 280.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Леонид Борисович Лерман, Наталия Григорьевна Шкода, Сергей Владимирович Шостак
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.