Electron gas parameters change inside langmuir layer in electric propulsion devices

Authors

  • Shahram Roshanpur Zhukovskiy National Aerospace University “Kharkiv Aviation Institute”, Chkalova str., 17, Kharkiv, Ukraine, 61070, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.16675

Keywords:

electric propulsion thrusters, potential barrier, Landau integral, boundary conditions

Abstract

Small size of electric propulsion thrusters comparatively with free path lengths of all the processes leads to the situation when electrons non-mirror reflection from near-the-surface potential barrier plays more role in electrons gas parameters change than collisions in the volume. The mathematic model of electrons non-mirror reflection from potential barrier on plasma border with surface or surrounding vacuum is represented. The expression is written for electrons velocity distribution in reflected flow in the form, which is analog to Landau collision integral. The boundary conditions for electrons are written, which must be used in mathematic modeling of processes in electric propulsion thrusters

Author Biography

Shahram Roshanpur, Zhukovskiy National Aerospace University “Kharkiv Aviation Institute”, Chkalova str., 17, Kharkiv, Ukraine, 61070

Post graduate student Department of rocket and space engines and power systems of flying vehicles

References

  1. Гришин, С. Д. Электрические ракетные двигатели [Текст] / С. Д. Гришин, Л. В. Лесков, Н. П. Козлов. – М.: Машиностроение, 1975. – 273 с.
  2. A Simple Semi-Analytic Model for Optimum Specific Impulse Interplanetary Low Thrust Trajectories [Текст] / D. Y. Oh, D. Lan-dau // Proc. of 32nd International Electric Propulsion Conference. Wiesbaden, Germany. – 2011. – P. 22.
  3. A Reorbiter for GEO Large Space Debris Using Ion Beam Irradiation [Текст] / Shoji Kitamura, Yukio Hayakawa, Satomi Kawa-moto // Proc. of 32nd International Electric Propulsion Conference. Wiesbaden, Germany. – 2011. – P. 23.
  4. Architecture, Functional Features and Operational Characteristics of the HEMPT based Ion Propulsion System [Текст] / S. Weis, N. Koch, M. Schirra, A. Lazurenko, B. van Reijen, J. Haderspeck, A. Genovese, P. Holtmann // Proc. of 32nd International Electric Propulsion Conference. Wiesbaden, Germany. – 2011. – P. 30.
  5. Optimization of the Operating Parameters for a 20 mN Class Ion Thruster [Текст] / Hiroshi Nagano, Kenichi Kajiwara, Yukio Hayakawa, Toshiyuki Ozaki, Yukikazu Kasai // Proc. of 32nd International Electric Propulsion Conference. Wiesbaden, Germany. – 2011. – P. 70.
  6. Investigations of Low Power Hall Thruster SPT-20M on Increased Voltage Mode [Текст] / A. V. Loyan, T. A. Maksymenko, N. N. Koshelev, O. P. Rybalov // Proc. of 32nd International Electric Propulsion Conference. Wiesbaden, Germany. – 2011. – P. 633.
  7. Mathematical Model of Acceleration Stage of Magnetic Inductive Pulsed Plasma Thruster [Текст] / Hatef Dinparasti Saleh, S. Yu. Nesterenko // Proc. of 32nd International Electric Propulsion Conference. Wiesbaden, Germany. – 2011. – P. 623.
  8. Нестеренко, С. Ю. Электрогазодинамика [Электронный ресурс] : консп. лекц. / С. Ю. Нестеренко. – Х.: Нац. аэрокосм. ун-т ”Харьк. авиац. ин-т”, 2012. – 216 с. – Режим доступа: www/ URL: http://library.khai.edu.
  9. Лифшиц, Е. М. Физическая кинетика [Текст] / Е. М. Лифшиц, Л. П. Питаевский. – М.: Наука, 1979. – 528 с.
  10. Росси, Б. Введение в физику космического пространства [Текст] / Б. Росси, С. Ольберт. – М.: Атомиздат, 1974. – 392 с.
  11. Grishin, S. D., Leskov, L. V., Kozlov, N. P. (1975). Electricheskiye raketniye dvigateli, Moscow, USSR: Mashinostroyeniye, 273.
  12. Oh, D. Y., Landau, D. (2011). A Simple Semi-Analytic Model for Optimum Specific Impulse Interplanetary Low Thrust Trajectories. Proc. 32nd IEPC, Wiesbaden, Germany, 22.
  13. Shoji Kitamura, Yukio Hayakawa, Satomi Kawamoto. (2011). A Reorbiter for GEO Large Space Debris Using Ion Beam Irradiation. Proc. 32nd IEPC, Wiesbaden, Germany, 23.
  14. Weis, S., Koch, N., Schirra, M., Lazurenko, A., van Reijen B., Haderspeck, J., Genovese, A., Holtmann, P. (2011). Architecture, Functional Features and Operational Characteristics of the HEMPT based Ion Propulsion System. Proc. 32nd IEPC, Wiesbaden, Germany, 30.
  15. Hiroshi Nagano, Kenichi Kajiwara, Yukio Hayakawa, Toshiyuki Ozaki, Yukikazu Kasai. (2011). Optimization of the Operating Parameters for a 20 mN Class Ion Thruster. Proc. 32nd IEPC, Wiesbaden, Germany, 70.
  16. Loyan, A. V., Maksymenko, T. A., Koshelev, N. N., Rybalov, O. P. (2011). Investigations of Low Power Hall Thruster SPT-20M on Increased Voltage Mode. Proc. 32nd IEPC, Wiesbaden, Germany, 633.
  17. Hatef Dinparasti Saleh, Nesterenko, S. Yu. (2011). Mathematical Model of Acceleration Stage of Magnetic Inductive Pulsed Plasma Thruster. Proc. 32nd IEPC, Wiesbaden, Germany, 623.
  18. Nesterenko, S. Yu. (2011). Elektrogazodinamika. Kharkiv, Ukarine: KhAI. Available: http://library.khai.edu/.
  19. Lifshic, E. M., Pitayevskiy, L. P. (1979). Fizicheskaya kinetika. Moscow, USSR: Nauka.
  20. Rossi, B., Olbert, S. (1974). Vvedeniye v fiziku kosmicheskogo prostranstva. Moscow, USSR: Atomizdat.

Downloads

Published

2013-07-30

How to Cite

Roshanpur, S. (2013). Electron gas parameters change inside langmuir layer in electric propulsion devices. Eastern-European Journal of Enterprise Technologies, 4(5(64), 36–39. https://doi.org/10.15587/1729-4061.2013.16675

Issue

Section

Applied physics