Model of the polymer melt flow

Authors

  • Виталий Валерьевич Леваничев East-Ukrainian National University named after V. Dahl, Kv. Molodegnyi, 20а, Lugansk, Ukraine, 91034, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.16685

Keywords:

non-Newtonian fluid, rheology, flow model, relaxation, polymer melt

Abstract

The model of polymer melt flow has been developed and the equation of full rheological curve of non-Newtonian fluid without empirical power-law dependences has been first obtained. It is assumed that in a steady mode mainly a plug flow can be developed and rheological curve is a change in the melt geometry at the wall area due to the melt relaxation decrease at higher flow rates. The non-Newtonian flow area is formed when the flow and relaxation rates are approximately equal.

The non-Newtonian flow occurs in the areas of low and high shear rates, with decreasing interaction of flow and relaxation processes. The equation allows estimating the transition points (viscosity and shear rate) between the flow areas. It is shown that the effective contact area is decreased faster than the shear stress is increased, so the viscous friction force is reduced at the non-Newtonian flow area.

The model enables to study the interaction at the wall area of the flow, it is important for extrusion high-speed processes, in small-scale production with frequent readjustments and composition changing

Author Biography

Виталий Валерьевич Леваничев, East-Ukrainian National University named after V. Dahl, Kv. Molodegnyi, 20а, Lugansk, Ukraine, 91034

Candidate of Technical Sciences, docent

Department of Systems Engineering

References

  1. Michaeli, W. Extrusion dies for plastics and rubber: design and engineering computations [Текст] / Hanser Publishers, Munich, 1992. - 340с.
  2. Виноградов, Г.В. Реология полимеров [Текст] / Г.В. Виноградов, А.Я. Малкин; М. Химия, 1977. -434с.
  3. Чанг, Д. Реология в процессах переработки полимеров [Текст] : пер. с англ. под ред. Г.В.Виноградова и М.Л. Фридмана.- М.: Химия, 1979.-368с.
  4. Altınkaynak, A. Melting in a Single Screw Extruder: Experiments and 3D Finite Element Simulations [Текст] / A. Altınkaynak, M. Gupta, M.A. Spalding, S.L. Crabtree / Журн. International Polymer Processing XXVI ч.2., 2011.- С.182-196.
  5. Раувендаль, К. Экструзия полимеров [Текст] / пер. с англ. под ред. А.Я. Малкина – СПб.: Профессия, 2008.- 768с.
  6. Effect of micro-viscosity and wall slip on polymer melt rheology inside micro-channel [Электронный ресурс]/ С. Weio, S.Yaqiang, L. Chunqian, L. Qian, S.Changyu/ Материалы конференции ANTEC 2011.- Режим доступа: http://www.plasticsengineering.org/polymeric/node/4897/ - 2011г.-Загл. с экрана.
  7. Wall slip of molten high density polyethylene [Электронный ресурс]/ S. G. Hatzikiriakos, J. M. Dealy / Department of Chemical Engineering, McGill University / Режим доступа http://www.chem.mtu.edu/~fmorriso/cm4655/Hazikiriakos_Dealy.pdf/ - 1991г.-Загл. с экрана.
  8. Единство динамики и механизмов возникновения вихрей турбулентности и вихрей Бенара [Электронный ресурс] / Агентство научно-технической информации.- Режим доступа: http://www.sciteclibrary.ru/rus/catalog/pages/4917.html./ - 1.04.2003г.-Загл. с экрана.
  9. Дядичев, В.В. Методика описания реологии расплава полимера в широком диапазоне скоростей сдвига [Текст]/ В.В. Дядичев, В.В. Леваничев, Т.М. Терещенко// Ресурсозберігаючі технології виробництва та обробки тиском матеріалів у машинобудуванні: Зб. наук. пр. ч. 2.- Луганськ: вид-во СНУ ім. В.Даля, 2003.- С.68-72.
  10. Тагер, А.А. Физико-химия полимеров [Текст] / А.А. Тагер. Изд. 4-е, – М.: Научный мир. 2007.- 576с.
  11. Michaeli, W. (1992). Extrusion dies for plastics and rubber: design and engineering computations. Hanser Publishers, Munich, 340.
  12. Vinogradov, G.V. Malkin, A.J. (1977). Rheology of polymers. Moscow, USSR, Chemistry, 434.
  13. Han, C. (1979). Rheology in polymer processing. tr. from Eng. ed. Vinogradov, G.V. Fridman, M.L. Moscow, USSR, Chemistry-368.
  14. Altınkaynak, M. Gupta, M. A. Spalding, S. L. Crabtree (2011). Melting in a Single Screw Extruder: Experiments and 3D Finite Element Simulations. Magazine International Polymer Processing XXVI (2), 182-196.
  15. Rauvendal, K. (2008) Рolymer extrusion. tr. from english. ed. A.J. Malkin. St. Petersburg.: Profession, 768.
  16. Wei, C., Yaqiang, S., Chunqian, L., Qian, L., Changyu, S., (2011). Effect of micro-viscosity and wall slip on polymer melt rheology inside micro-channel. Materials conference ANTEC 2011. Access mode http://www.plasticsengineering.org/polymeric/node/4897.
  17. Hatzikiriakos, S.G. Dealy, J. M., (1991). Wall slip of molten high density polyethylene. Department of Chemical Engineering, McGill University. Access mode http://www.chem.mtu.edu/~fmorriso/cm4655/Hazikiriakos_Dealy.pdf.
  18. The unity of the dynamics and mechanisms of turbulence eddies and vortices Benard. (2003). Agency for Science and Technology Information. Access mode http://www.sciteclibrary.ru/rus/catalog/pages/4917.html.
  19. Dyadichev, V.V., Levanichev, V.V., Tereshtchenko, T.M. (2003). Method description rheology of the polymer melt in a wide range of shear rates. Resource-saving technologies of production and fabrication of materials in mechanical engineering: Coll. Science. etc. Part 2. Lugansk: publ EUNU. Dal, 68-72.
  20. Tager, A.A. (2007). Physical chemistry of polymers. 4th edition. Moscow, Scientific World, 576.

Published

2013-07-30

How to Cite

Леваничев, В. В. (2013). Model of the polymer melt flow. Eastern-European Journal of Enterprise Technologies, 4(7(64), 39–41. https://doi.org/10.15587/1729-4061.2013.16685

Issue

Section

Applied mechanics