Distribution of internal and reactive forces while composite beams bending

Authors

  • Станіслав Богданович Ковальчук Poltava State Agrarian Academy, 1/3 Skovorody str., Poltava, 36003, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.16688

Keywords:

internal force, reactive force, bending, composite, beam, shear, iteration

Abstract

In the paper the distribution of internal and reactive forces while modeling the composite beams bending using an iteration shear model has been analyzed.

Based on stress-strain relations of the model analytical relations have been obtained for determining internal forces -bending moments and shear forces in case of statically indeterminate beams, made of heterogeneous composite material, pliable to shear deformations.

The influence of shear pliability of beam material on the internal forces form and value and reactive forces intensity has been defined.

It is theoretically shown that accounting of shear pliability of beam material does not break the pattern of internal forces distribution, corresponding to the conventional model, but specifies their values with additional fixations leading to static indeterminacy of the task.

The results of experimental and theoretical researches of reactive and internal forces in statically indeterminate beams have been given

Author Biography

Станіслав Богданович Ковальчук, Poltava State Agrarian Academy, 1/3 Skovorody str., Poltava, 36003

Assistant Department of Technical Disciplines

References

  1. Пискунов, В. Г. Итерационная аналитическая теория в механике слоистых композитных систем [Текст] / В. Г. Пискунов // Механика композит. Материалов. – 2003. – Т.39, №1. – С.2-24.
  2. Горик, О. В. Механіка деформування композитних брусів [Текст] / О. В. Горик, В. Г. Піскунов, В. М. Чередніков. – Полтава-Київ: АСМІ, 2008. – 402с.
  3. Горик, О. В. Розрахунок статично невизначних композитних балок з ускладненими умовами деформування [Текст] / О. В. Горик, С. Б. Ковальчук // Вісник Національного транспортного університету: В 2-х частинах. – К.: НТУ, 2010. – Вип. 21, Ч.2. – С.314-319.
  4. Механика композиционных материалов и элементов конструкций [Текст] / А. Н. Гузь, Я. М. Григоренко, Г. А. Ванин и др. – К.: Наукова думка, 1983. – 464с.
  5. High-order model of the stress-strain state of composite bars and its implementation by computer algebra [Текст] / V. G. Piskunov, A. V. Goryk, A. L. Lyakhov, V. N. Cherednikov // Composite structures. – Oxford: Elsevier. – 2000. – Р.169-176.
  6. Librescu, L. Recent developments in the modeling and behavior of ad-vanced sandwich constructions: a survey [Текст] / L. Librescu, T. Hause // Composite structures. – 2000. – Vol.48. – P.1-17.
  7. Mechanical bending behaviour of composite T-beams / A. Silva, J. Travassos, M. M. de Freitas, C.M. Mota Soares // Composite structures. – 1993. – Vol.25. – P.579-586.
  8. Noor, A. K. Assessment of shear deformation theories for multilayered composite plates [Текст] / A. K. Noor, W. S. Barton // Appl. Mech. Rev. – 1989. – Vol.42. – P.1-13.
  9. Polyakov, V. Stress concentration in bending of sandwich orthotropic panels under point forces [Текст] / V. Polyakov // Composite structures. – 2000. – Vol.48. – P.177-181.
  10. Reddy, J. N. A review of refined theories of laminated composite plates [Текст] / J.N. Reddy // Shock Vibr. Dig. – 1990. – Vol.22. – P.3-17.
  11. Savoia, M. A variational approach to three-dimensional elasticity solutions of laminated composite plates [Текст] / M. Savoia, J. N. Reddy // J. Appl. Mech. ASME. – 1992. – Vol.59. – P.166-175.
  12. Piskunov, V. G. (2003). The iterative analytical theory in the mechanics of layered composite systems. Mechanics of Compos. Mater., Vol.39, №1, 2-24.
  13. Goryk, A. V., Piskunov, V. G., Cherednikov, V. M. (2008). Mechanical deformation of composite beams. Poltava-Kyiv: ASMI, 402p.
  14. Goryk, A. V., Kovalchuk, S. B. (2010). Calculation of statically indeterminable composite beams with complicated conditions of the deformation. Herald of the National Transport University, Vol. 21, Part 2., 314-319.
  15. Guz, A. N., Grigorenko, Y. M., Vanin, G. A. et al. (1983). Mechanics of composite materials and structural elements. Kyiv: Naukova Dumka, 464p.
  16. Piskunov, V. G., Goryk, A. V., Lyakhov, A. L., Cherednikov, V. N. (2000). High-order model of the stress-strain state of composite bars and its implementation by computer algebra. Composite structures. Oxford: Elsevier, 169-176.
  17. Librescu, L., Hause, T. (2000). Recent developments in the modeling and behavior of advanced sandwich constructions: a survey. Composite structures, Vol.48, 1-17.
  18. Silva, A., Travassos, J., de Freitas, M. M., Mota Soares, C. M. (1993). Mechanical bending behaviour of composite T-beams. Composite structures, Vol.25, 579-586.
  19. Noor, A. K., Barton, W. S. (1989). Assessment of shear deformation theories for multilayered composite plates. Appl. Mech. Rev., Vol.42, 1-13.
  20. Polyakov, V. (2000). Stress concentration in bending of sandwich orthotropic panels under point forces. Composite structures, Vol.48, 177-181.
  21. Reddy, J. N. (1990). A review of refined theories of laminated composite plates. Shock Vibr. Dig., Vol.22, 3-17.
  22. Savoia, M., Reddy, J. N. (1992). A variational approach to three-dimensional elasticity solutions of laminated composite plates. J. Appl. Mech. ASME, Vol.59, 166-175.

Published

2013-07-30

How to Cite

Ковальчук, С. Б. (2013). Distribution of internal and reactive forces while composite beams bending. Eastern-European Journal of Enterprise Technologies, 4(7(64), 55–59. https://doi.org/10.15587/1729-4061.2013.16688

Issue

Section

Applied mechanics