Assessment and prevention of the propagation of carbon monoxide over a working area at arc welding

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.170510

Keywords:

arc welding, carbon monoxide, harmful emissions, workspace, gas poisoning

Abstract

This paper reports a study of air environment at industrial premises where welding processes take place, with special attention paid to the formation of carbon monoxide (oxide) (CO) in the working environment in the process of manual arc welding. We have given the classification of basic harmful substances generated during welding and related processes in terms of the character of negative influence on the body of a welder. A mathematical model of the dynamics of change in the concentration of carbon monoxide in the air of a working area has been constructed, based on the amount of a harmful substance (m) in the air at premises at a time point, the intensity of its release into air, and the air exchange rate. A given mathematical model includes the propagation of carbon monoxide in the air, considering the air exchange between the overall volume of a premise and the local volumes of working zones.

There are not enough studies into the formation of carbon monoxide during welding processes, which is why examining this process is a priority.

Out experimental study has confirmed that the concentration of carbon monoxide outside the local volumes of local ventilation devices, that is in the air of working zones, remains constant (to 0.01 mg/m3) and does not exceed MPC (20 mg/m3). A failure or the absence of general ventilation leads to a rapid increase in the concentration of carbon monoxide (CO) in line with an exponential dependence (from 150 to 200 mg/m3 over 0.5‒0.6 hours) within a small closed workspace (1 m3), and can quickly spread throughout the entire premise.

However, a failure or the absence of general ventilation leads to a rapid increase in the concentration of carbon monoxide (CO) in line with an exponential dependence. This indicates that general ventilation is important, but it does not warrant safety for welders and other workers from gas poisoning. Therefore, the use of local ventilation must be ensured, as well as respiratory protection for all present when conducting welding processes. The derived mathematical models make it possible to assess risks during welders’ operations, to take into consideration CO emissions when calculating ventilation systems in working areas, to adjust the system that manages risks and labor safety.

Author Biographies

Viacheslav Berezutskyi, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of Labor and Environment Protection

 

Inna Hondak, Kharkiv National University of Radio Electronics Nauky avе., 14, Kharkіv, Ukraine, 61166

Senior Lecturer

Department of Occupational Safety

Nataliia Berezutska, Kharkiv National University of Radio Electronics Nauky avе., 14, Kharkіv, Ukraine, 61166

PhD, Associate Professor

Department of Occupational Safety

Vitaly Dmitrik, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of Welding

Veronika Gorbenko, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD

Department of Labor and Environment Protection

Viktoriia Makarenko, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Labor and Environment Protection

References

  1. Markiv, B. Umovy pratsi zvarnykiv. Vplyv shkidlyvykh vyrobnychykh faktoriv. Available at: http://te.dsp.gov.ua/umovy-pratsi-zvarnykiv-vplyv-shkidlyvyh-vyrobnychyh-faktoriv/
  2. Welding fume hazards. Safety+Health. Available at: https://www.safetyandhealthmagazine.com/articles/14291-welding-fume-hazards&prev=search
  3. Horbokon, A. V. (2017). Zvariuvalnyi aerozol ta zasoby zmenshennia yoho shkidlyvoho vplyvu. Unyversytetskaia nauka – 2017: materialy mezhdunar. nauk.-tekhn. konf. Vol. 1. Mariupol, 293–294.
  4. Shkidlyvi rechovyny pry zvariuvanni i navishcho potribno filtroventyliatsiine obladnannia. Available at: http://sammit.dp.ua/articles/svarka_vred.htm
  5. Grishagin, V. M., Lugovtsova, N. Yu. (2011). Svarochnyy aerozol' kak osnovnaya ekologicheskaya problema sovremennogo svarochnogo proizvodstva v mashinostroenii. Vestnik nauki Sibiri, 1, 726–728.
  6. Levchenko, O. H., Bulat, A. V., Bezushko, O. M. (2010). Vplyv vydu elektrodnoho pokryttia na hihienichni kharakterystyky aerozoliv, shcho utvoriuiutsia pry zvariuvanni vysokolehovanykh stalei. Visnyk NTU «KPI». Seriya «Hirnytstvo», 19, 171–177.
  7. Hariri, A., Paiman, N. A., Leman, A. M., Yusof, M. Z. Md. (2014). Development of Welding Fumes Health Index (WFHI) for Welding Workplace’s Safety and Health Assessment. Iran J Public Health, 43 (8), 1045–1059. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411901/
  8. Savytskyi, O. M., Mandryk, O. M. (2014). Ekolohichna skladova duhovoho zvariuvannia ta napriamok yii pidvyshchennia. Naukovyi visnyk IFNTUNH, 1 (36), 66–73. Available at: http://elar.nung.edu.ua/bitstream/123456789/2544/1/3450p.pdf
  9. Mistry, P. K. J. (2015). Impact of Welding Processes on Environment and Health. International Journal of Advanced Research in Mechanical Engineering & Technology (IJARMET), 1 (1), 17–20. Available at: http://ijarmet.com/wp-content/themes/felicity/issues/vol1issue1/pankaj1.pdf
  10. Meneses, V. A. de, Leal, V. S., Scotti, A. (2016). Influence of Metal Transfer Stability and Shielding Gas Composition on CO and CO2 Emissions during Short-circuiting MIG/MAG Welding. Soldagem & Inspeção, 21 (3), 253–268. doi: https://doi.org/10.1590/0104-9224/si2103.02
  11. Qin, J., Liu, W., Zhu, J., Weng, W., Xu, J., Ai, Z. (2014). Health Related Quality of Life and Influencing Factors among Welders. PLoS ONE, 9 (7), e101982. doi: https://doi.org/10.1371/journal.pone.0101982
  12. Kirichenko, K. Yu., Rogulin, R. S., Drozd, V. A., Gridasov, A. V., Holodov, A. S., Il'yaschenko, D. P. et. al. (2018). Otsenka rasprostraneniya chastits svarochnogo aerozolya v prostranstve rabochey zony svarschika v zavisimosti ot vremeni. Ekologicheskaya bezopasnost' stroitel'stva i gorodskogo hozyaystva, 2, 42–51. doi: http://doi.org/10.24411/1816-1863-2018-12042
  13. Ignatova, A. M., Ignatov, M. N. (2012). Otsenka morfologii, dispersnosti, struktury i himicheskogo sostava tverdoy sostavlyayuschey svarochnyh aerozoley posredstvom sovremennyh metodov issledovaniy. Nauchno-tekhnicheskiy vestnik Povolzh'ya, 3, 133–138.
  14. Kuznetsov, D. A., Simonovich, A. L., Naumov, S. V., Ignatova, A. M. (2012). Issledovanie fiziko-himicheskih harakteristik tverdoy sostavlyayuschey svarochnyh aerozoley. Aerozoli Sibiri: sb. tez. dokl. XIX Rab. gruppy konf. Tomsk, 78.
  15. Bykovskyi, O. H., Lazutkin, M. I. (2012). Okhorona pratsi pry vyrobnytstvi konstruktsiy z kolorovykh metaliv i splaviv. Visnyk Nats. tekhn. un-tu "KhPI", 1, 128–136.
  16. Demchina, M. (2012). Vpliv komponentіv zvaryuval'nogo aerozolyu na zdorov'ya lyudini. Available at: https://city-adm.lviv.ua/news/society/emergency/233003-vplyv-komponentiv-zvariuvalnoho-aerozoliu-na-zdorovia-liudyny
  17. Logvinov, Y. V. (2016). Ecological management, and decision of a concrete question of welding aerosol localization and neutralization at surfacing. Visnyk Pryazovskoho derzhavnoho tekhnichnoho universytetu. Seriya: Tekhnichni nauky, 33, 193–197.
  18. Hranychno dopustymi kontsentratsiyi HDK ta orientovni bezpechni rivni diyannia OBRD zabrudniuiuchykh rechovyn v atmosfernomu povitri naselenykh mists. Available at: http://www.mcl.kiev.ua/wp-content/uploads/2017/10/OBRV-2017.pdf
  19. Li, H., Hedmer, M., Kåredal, M., Björk, J., Stockfelt, L., Tinnerberg, H. (2015). A Cross-Sectional Study of the Cardiovascular Effects of Welding Fumes. PLOS ONE, 10 (7), e0131648. doi: https://doi.org/10.1371/journal.pone.0131648
  20. Levchenko, O. G., Demetska, O. V., Lukyanenko, A. O. (2016). Cytotoxicity of welding fumes generated in welding with covered electrodes. Ukrainskyi zhurnal z problem medytsyny pratsi, 3, 30–35.
  21. Hihienichna klasyfikatsiya pratsi za pokaznykamy shkidlyvosti ta nebezpechnosti faktoriv vyrobnychoho seredovyshcha, vazhkosti ta napruzhenosti trudovoho protsesu. Hihienichni normatyvy HN 3.3.5-8-6.6.1 2002 r. (2001). Kyiv, 46.
  22. Opara, N. M., Dudar, N. I. Chadnyi haz: vplyv na orhanizm liudyny, sposoby indyvidualnoho zakhystu i bezpechnoi povedinky. Available at: http://dspace.pdaa.edu.ua:8080/bitstream/123456789/798/1/Чадний%20газ%20%20вплив%20на%20організм%20людини%2C%20способи%20індивідульного%20захисту%20і%20безпечної%20поведінки.pdf
  23. Okys vuhletsiu (chadnyi haz). Available at: https://empendium.com/ua/chapter/B27.II.20.10
  24. Entsiklopediya po ohrane i bezopasnosti truda. Available at: http://base.safework.ru/iloenc
  25. Ukraina lidyruie za kilkistiu pidpryiemstv derzhavnoi formy vlasnosti (2017). Available at: https://konkurent.in.ua/publication/14844/ukrayina-lidiruye-za-kilkistyu-pidpriyemstv-derzhavnoyi-formi-vlasnosti-/
  26. Dozor S M Signalizator-analizator gazov mnogokomponentniy individual'nyy. Rukovodstvo po ekspluatatsii AGAT RE. Available at: https://docplayer.ru/53460271-Dozor-s-m-signalizator-analizator-gazov-mnogokomponentnyy-individualnyy-rukovodstvo-po-ekspluatacii-agat-re.html
  27. Pachurin, G. V., Shevchenko, S. M., Galka, N. V., Galka, A. G. Dangerous and harmful factors of production processes in snack food establishment. Fundamental research, 11, 69–73. Available at: https://www.fundamental-research.ru/ru/article/view?id=40929
  28. Zaets, Yu. L., Belyaeva, V. V. (2008). Raschet obrazovaniya vzryvoopasnoy kontsentratsii v pomeschenii pri avariynoy utechke gaza. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana, 20, 91–93. Available at: http://nbuv.gov.ua/UJRN/vdnuzt_2008_20_21
  29. Tolstyh, V. K. (2010). Programmirovanie v srede Mathcad. Donetsk: DonNU, 128.
  30. Rybalko, O. M. (2014). Vyshcha matematyka (spetsialni rozdili). Osnovy teoriyi ymovirnostei z elementamy matematychnoi statystyky. Kharkiv: Kolehium, 359.
  31. Kir'yanov, D. V. (2012). Mathcad 15/MathcadPrime 1.0. Sankt-Peterburg: BHV-Peterburg, 432.
  32. Makarov, E. G. (2011). Inzhenernye raschety v Mathcad 15. Uchebniy kurs. Sankt-Peterburg: BGTU-Voenmekh, 345.

Downloads

Published

2019-06-17

How to Cite

Berezutskyi, V., Hondak, I., Berezutska, N., Dmitrik, V., Gorbenko, V., & Makarenko, V. (2019). Assessment and prevention of the propagation of carbon monoxide over a working area at arc welding. Eastern-European Journal of Enterprise Technologies, 3(10 (99), 38–49. https://doi.org/10.15587/1729-4061.2019.170510