Prevention of scale formation and saline wastewater discharge during district heating systems operation

Authors

  • Сергей Павлович Высоцкий Automobile and highway institute of “Donetsk National Technical University” Kirova str., 51 apt., Gorlovka, Ukraine, 84646, Ukraine https://orcid.org/0000-0003-1812-2703
  • Алексей Витальевич Варивода LTD “Interregional center for oil and gas technologies” Chernishevska srt., 13 apt., Kharkiv, 61057, Ukraine https://orcid.org/0000-0001-8974-3991

DOI:

https://doi.org/10.15587/1729-4061.2013.18178

Keywords:

heating systems, scale formation, carbonate index, weakly acidic cation exchange resins, reagents, softening

Abstract

The factors, determining the intensity of scale formation in district heating systems, were considered. For "closed" systems scale formation intensity is defined by the carbonate index, which is standardized by the rules of technical operation depending on the temperature of water heating. For "open" systems, which have direct contact with the atmosphere (circulating water cooling systems), the intensity of salts accumulation is proportional to the product of calcium hardness and square alkalinity of water.

The equations were derived, which allow determining the required load by absorbed cations on weakly acidic cation exchange resins and, accordingly, the required amount of filters media. Replacing traditional technology of preparation of make-up water of heating systems using sodium cycling method by water treatment in filters, loaded by weakly acidic cation exchange resin with further decarbonization, allows reducing reagent consumption by 8 times and significant reduction of saline wastewater discharge into surface water reservoirs.

The results of studying the process of softening waste regeneration solutions by soda and lime are given. Reduction of wastewater hardness to the values<3mg∙ekv/dm3 requires precise dosing of reagents.

Author Biographies

Сергей Павлович Высоцкий, Automobile and highway institute of “Donetsk National Technical University” Kirova str., 51 apt., Gorlovka, Ukraine, 84646

Doctor of engineering, Professor, Head of a department

The department of ecology and life safety activities

Алексей Витальевич Варивода, LTD “Interregional center for oil and gas technologies” Chernishevska srt., 13 apt., Kharkiv, 61057

Director

References

  1. Todd, J. The design of living technologies for waste treatment [Текст] / J. Todd, B. Josephson // Ecological engineering. – 1966. – № 6. – P. 106-136.
  2. Cauchi, R. Sustainable waste water management – treatment and re-use [Текст] / R. Cauchi // Environmental Technology, 2006. – 350 p.
  3. Балабан-Ирменин, Ю. В. Закономерности накипеобразования в водогрейном оборудовании систем теплоснабжения [Текст] / Ю.В. Балабан-Ирменин, А. В. Богловский, А. Г. Васина и др. // Энергосбережение и водоподготовка. – 2004. – № 3. – С. 10-16.
  4. Vysotsky, S. P. Calcium carbonate formation in the water treatment systems and on the heading surfaces [Текст] / S. P. Vysotsky, A. V. Fatkulina // Проблемы экологии. – 2013. – № 1. – P. 3-13.
  5. Висоцький, С. П. Накипоутворення в теплофікаційних системах [Текст] / С. П. Висоцький, Г. В. Фаткуліна // Вісник Донбаської національної академії будівництва і архітектури. – 2009. – № 2. – С. 99-105.
  6. Правила технической эксплуатации электростанций и сетей [Текст] – Энергоиздат, 1989. – 288 с.
  7. Grau, P. Mathematical modeling of wastewater treatment technologies in industrial water circuits [Текст] / P. Grau, I. Lizarralde, L. Sancho : mid term Conference (14 of June 2013, Oviedo).
  8. Chamberlain, B. Designing sustainable waste water systems: Generating Design Alternatives [Текст] / B. Chamberlain, A. Zarei, H. Taheri, D. Poole [and others] // Journal of Environment Management. – 2008. – № 88 (3). – P. 437-447.
  9. Helmer, R. Water pollution control [Текст] / R. Helmer, I. Hespanhol. // A Guide to the use of Water Quality Managment. – WHO/UNEP, 1997. – 39 p.
  10. Pattarkine, V. M. Advanced lagoon treatment technologies for wastewater treatment [Текст] / V. M. Pattarkine, R.C. Chann, C. E. Tharp. – Water Environment Foundation, 2006. – 2991-3002 p.
  11. J. Todd, B. Josephson. (1966). The design of living technologies for waste treatment. Ecological engineering. № 6, 106-136.
  12. Cauchi, R. (2006). Sustainable waste water management – treatment and re-use. Environmental Technology. 350.
  13. Yu. V. Balaban-Irmenin, A. V. Boglovskiy, A. G. Vasina [i dr.]. (2004). Zakonomernosti nakipeobrazovaniya v vodogreynom oborudovanii sistem teplosnabzheniya. Energosberezhenie i vodopodgotovka. № 3, 10-16.
  14. Vysotsky, S. P. Fatkulina, A. V. (2013). Calcium carbonate formation in the water treatment systems and on the heading surfaces. Problemy ekologii. № 1, 3-13.
  15. S. P. Visotskiy, G. V. FatkulIna. (2009). Nakipoutvorennya v teplofIkatsiynih sistemah. Visnyk Donbaskoy natsionalnoy akademii budivnitstva i arhitektury. № 2, 99-105.
  16. Pravila tehnicheskoy ekspluatatsii elektrostantsiy i setey. (1989). Energoizdat. 288.
  17. P. Grau, I. Lizarralde, L. Sancho. (2013) Mathematical modeling of wastewater treatment technologies in industrial water circuits. mid term Conference, Oviedo.
  18. B. Chamberlain, A. Zarei, H. Taheri, D. Poole [and others]. (2008). Designing sustainable waste water systems: Generating Design Alternatives. Journal of Environment Management. № 88 (3), 437-447.
  19. R. Helmer, I. Hespanhol. (1997). Water pollution control. A Guide to the use of Water Quality Managment. WHO/UNEP, 39.
  20. V. M. Pattarkine, R. C. Chann, C. E. Tharp. (2006). Advanced lagoon treatment technologies for wastewater treatment. Water Environment Foundation. 2991-3002.

Published

2013-10-28

How to Cite

Высоцкий, С. П., & Варивода, А. В. (2013). Prevention of scale formation and saline wastewater discharge during district heating systems operation. Eastern-European Journal of Enterprise Technologies, 5(6(65), 4–8. https://doi.org/10.15587/1729-4061.2013.18178

Issue

Section

Technology organic and inorganic substances